MedLLaMA-3

This model is developed by Basel Anaya.

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Reverb/MedLLaMA-3"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

πŸ† Evaluation

Tasks Version Filter n-shot Metric Value Stderr
stem N/A none 0 acc 0.6466 Β± 0.0056
none 0 acc_norm 0.6124 Β± 0.0066
- medmcqa Yaml none 0 acc 0.6118 Β± 0.0075
none 0 acc_norm 0.6118 Β± 0.0075
- medqa_4options Yaml none 0 acc 0.6143 Β± 0.0136
none 0 acc_norm 0.6143 Β± 0.0136
- anatomy (mmlu) 0 none 0 acc 0.7185 Β± 0.0389
- clinical_knowledge (mmlu) 0 none 0 acc 0.7811 Β± 0.0254
- college_biology (mmlu) 0 none 0 acc 0.8264 Β± 0.0317
- college_medicine (mmlu) 0 none 0 acc 0.7110 Β± 0.0346
- medical_genetics (mmlu) 0 none 0 acc 0.8300 Β± 0.0378
- professional_medicine (mmlu) 0 none 0 acc 0.7868 Β± 0.0249
- pubmedqa 1 none 0 acc 0.7420 Β± 0.0196
Groups Version Filter n-shot Metric Value Stderr
stem N/A none 0 acc 0.6466 Β± 0.0056
none 0 acc_norm 0.6124 Β± 0.0066
Downloads last month
23
Safetensors
Model size
8.03B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Reverb/MedLLaMA-3

Finetuned
(385)
this model
Quantizations
1 model

Datasets used to train Reverb/MedLLaMA-3