Examples

Here are some examples of how to use this model in Python:

from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("Rel8ed/cleantech-cls")
model = AutoModelForCausalLM.from_pretrained("Rel8ed/cleantech-cls")

input_prompt = "[METAKEYWORD] innovation, technology, clean energy [TITLE] innovative clean energy solutions [META]" \
          "leading provider of clean energy solutions. [ABOUT] we are committed to reducing environmental impact through" \
          "cutting-edge clean energy solutions. [HOME] welcome to our website where we explore innovative technologies for a sustainable future."

inputs = tokenizer.encode(input_prompt, return_tensors='pt')
output = model.generate(inputs, max_length=50, num_return_sequences=5)

print("Generated text:")
for i, output in enumerate(outputs):
    print(f"{i+1}: {tokenizer.decode(output, skip_special_tokens=True)}")

Preprocess text

import re

def normalize(s, truncate=100):
    # Replace "\n" with "  "
    s = s.replace("\n", "  ")
    
    # Keep only letters (including accented letters) and spaces
    s = re.sub(r"[^a-zA-Zà-üÀ-Ü ]", "", s)
    
    # Split the string into words, truncate to the first 100 words, and join back into a string
    words = s.split()
    truncated = words[:truncate]
    s = " ".join(truncated)
    
    # Remove additional spaces
    s = re.sub(r"\s+", " ", s)
    
    return s



def create_full_text(homepageText,metakeywords = "", title = "", meta = "", aboutText = "",  truncate_limit=100):
    return (
        "[METAKEYWORD] " + normalize(metakeywords, truncate=truncate_limit) +
        " [TITLE] " + normalize(title, truncate=truncate_limit) +
        " [META] " + normalize(meta, truncate=truncate_limit) +
        " [ABOUT] " + normalize(aboutText, truncate=truncate_limit) +
        # Assuming we want to normalize homepageText with a much higher limit or no truncation
        " [HOME] " + normalize(homepageText, truncate=truncate_limit)
    ).strip()

# Sample raw inputs
metakeywords = "Green Energy, Sustainability"
meta = "Exploring innovative solutions for a sustainable future."
homepageText = "Welcome to our green energy platform where we share insights and innovations..."
aboutText = "We are committed to advancing green energy solutions through research and development."
title = "Green Energy Innovations"

# Applying your preprocessing steps
full_text = create_full_text(metakeywords, title, meta, aboutText, homepageText)

print(full_text)

Simple usage

from transformers import pipeline
import re

model_name_or_path = "Rel8ed/cleantech-cls"

classifier = pipeline('text-classification', model=model_name_or_path, max_length=512)

def normalize(s, truncate=100):
    s = s.replace("\n", "  ")
    s = re.sub(r"[^a-zA-Zà-üÀ-Ü ]", "", s)
    words = s.split()
    truncated = words[:truncate]
    s = " ".join(truncated)
    s = re.sub(r"\s+", " ", s)
    return s


def create_full_text(homepageText,metakeywords = "", title = "", meta = "", aboutText = "",  truncate_limit=100):
    return (
        "[METAKEYWORD] " + normalize(metakeywords, truncate=truncate_limit) +
        " [TITLE] " + normalize(title, truncate=truncate_limit) +
        " [META] " + normalize(meta, truncate=truncate_limit) +
        " [ABOUT] " + normalize(aboutText, truncate=truncate_limit) +
        # Assuming we want to normalize homepageText with a much higher limit or no truncation
        " [HOME] " + normalize(homepageText, truncate=truncate_limit)
    ).strip()

text = "Welcome to our green energy platform where we share insights and innovations"

predictions = classifier(create_full_text(text))
Downloads last month
14
Safetensors
Model size
167M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.