Edit model card

t5_recommendation_sports_equipment_english

This model is a fine-tuned version of t5-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4438
  • Rouge1: 72.2222
  • Rouge2: 66.6667
  • Rougel: 72.2222
  • Rougelsum: 72.2222
  • Gen Len: 4.0952

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 1 9.9716 12.6943 0.0 12.4298 12.3728 19.0
No log 2.0 2 10.1466 10.0457 0.0 9.8413 9.8341 19.0
No log 3.0 3 8.3378 10.7204 0.0 10.4782 10.4681 19.0
No log 4.0 4 7.3021 10.7204 0.0 10.4782 10.4681 19.0
No log 5.0 5 6.3242 10.5739 0.0 10.3628 10.3550 19.0
No log 6.0 6 5.4331 10.3340 0.7937 10.3340 10.2659 19.0
No log 7.0 7 4.7152 10.8955 0.7937 10.9896 10.8598 18.9524
No log 8.0 8 3.9937 14.1311 3.5923 14.2840 13.9026 15.0952
No log 9.0 9 3.1163 16.2812 1.0025 16.1905 16.0614 6.4762
No log 10.0 10 2.3306 23.1746 7.1429 23.1746 23.6508 4.1429
No log 11.0 11 1.9695 21.4286 7.1429 21.4286 21.7460 4.0476
No log 12.0 12 1.5552 24.1270 7.1429 23.9683 24.1270 3.9048
No log 13.0 13 0.8986 9.0476 0.0 9.0476 9.0476 3.7619
No log 14.0 14 0.7398 18.2540 2.3810 18.2540 18.2540 4.1905
No log 15.0 15 0.6966 12.6984 0.0 11.9048 12.6984 3.6667
No log 16.0 16 0.6352 32.5397 14.2857 32.5397 31.7460 3.7619
No log 17.0 17 0.5722 43.6508 23.8095 43.6508 43.6508 4.0952
No log 18.0 18 0.5628 43.6508 23.8095 43.6508 43.6508 3.8571
No log 19.0 19 0.5526 43.1746 23.8095 43.0159 42.8571 3.8571
No log 20.0 20 0.5522 48.4127 38.0952 48.4127 48.4127 3.7619
No log 21.0 21 0.5201 42.8571 28.5714 42.6190 42.6984 4.2381
No log 22.0 22 0.5262 36.9841 19.0476 36.9841 36.9841 4.2857
No log 23.0 23 0.5093 38.0952 23.8095 37.5397 37.9365 4.1429
No log 24.0 24 0.4818 45.6349 33.3333 45.0794 45.3968 4.1429
No log 25.0 25 0.4547 50.7937 38.0952 50.0 50.7937 4.1429
No log 26.0 26 0.4455 50.7937 38.0952 50.0 50.7937 4.1429
No log 27.0 27 0.4660 53.1746 42.8571 53.1746 53.1746 4.0476
No log 28.0 28 0.4825 53.1746 42.8571 53.1746 53.1746 4.0
No log 29.0 29 0.4928 53.1746 42.8571 53.1746 53.1746 4.0476
No log 30.0 30 0.4838 57.4603 42.8571 57.1429 57.1429 4.0476
No log 31.0 31 0.4955 60.3175 47.6190 60.3175 60.3175 4.0476
No log 32.0 32 0.5066 62.6984 52.3810 62.6984 62.6984 4.1429
No log 33.0 33 0.5189 62.6984 52.3810 62.6984 62.6984 4.1905
No log 34.0 34 0.5234 62.6984 52.3810 62.6984 62.6984 4.1905
No log 35.0 35 0.5225 62.6984 52.3810 62.6984 62.6984 4.1905
No log 36.0 36 0.5225 62.6984 52.3810 62.6984 62.6984 4.1905
No log 37.0 37 0.5058 62.2222 52.3810 61.9048 61.9048 4.1429
No log 38.0 38 0.4861 70.6349 61.9048 69.8413 69.8413 4.1905
No log 39.0 39 0.4625 70.6349 61.9048 69.8413 69.8413 4.1905
No log 40.0 40 0.4438 72.2222 66.6667 72.2222 72.2222 4.0952

Framework versions

  • Transformers 4.26.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.8.0
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using RedaAlami/t5_recommendation_sports_equipment_english 1