Edit model card

distilbert_agnews_padding60model

This model is a fine-tuned version of distilbert-base-uncased on the ag_news dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6521
  • Accuracy: 0.9441

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1838 1.0 7500 0.1831 0.9422
0.1417 2.0 15000 0.2010 0.9418
0.1226 3.0 22500 0.2138 0.9476
0.0872 4.0 30000 0.2581 0.9426
0.0614 5.0 37500 0.2946 0.9421
0.0432 6.0 45000 0.3639 0.9420
0.0384 7.0 52500 0.4363 0.9382
0.0297 8.0 60000 0.3892 0.9436
0.0206 9.0 67500 0.4465 0.9408
0.0126 10.0 75000 0.4713 0.9414
0.0146 11.0 82500 0.4982 0.9432
0.0143 12.0 90000 0.5465 0.9392
0.0092 13.0 97500 0.5421 0.9382
0.0055 14.0 105000 0.5625 0.9404
0.0025 15.0 112500 0.6237 0.9416
0.0014 16.0 120000 0.5890 0.9434
0.0065 17.0 127500 0.6210 0.9458
0.003 18.0 135000 0.6399 0.9439
0.0011 19.0 142500 0.6500 0.9458
0.0006 20.0 150000 0.6521 0.9441

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Realgon/distilbert_agnews_padding60model

Finetuned
(6572)
this model

Dataset used to train Realgon/distilbert_agnews_padding60model

Evaluation results