SlovakBERT based Named Entity Recognition
Deep Learning model developed for Named Entity Recognition (NER) in Slovak. The Gerulata/SlovakBERT based model is fine-tuned on webscraped Slovak news articles. The finished model supports the following IOB tagged entity categories: PERSON, ORGANIZATION, LOCATION, DATE, TIME, MONEY and PERCENTAGE
Related Work
Model usage
Simple Named Entity Recognition (NER)
from transformers import pipeline
ner_pipeline = pipeline(task='ner', model='Raychani1/slovakbert-ner-v2')
input_sentence = 'Hoci podľa ostatných údajov NBS pre Bratislavský kraj je aktuálna priemerná cena nehnuteľností na úrovni 2 072 eur za štvorcový meter, ceny bytov v hlavnom meste sú podstatne vyššie.'
classifications = ner_pipeline(input_sentence)
Named Entity Recognition (NER) with Visualization
For a Visualization Example please refer to the following Gist.
Model Prediction Output Example
Model Training
Training Hyperparameters
Parameter | Value |
---|---|
per_device_train_batch_size | 4 |
per_device_eval_batch_size | 4 |
learning_rate | 5e-05 |
adam_beta1 | 0.9 |
adam_beta1 | 0.999 |
adam_epsilon | 1e-08 |
num_train_epochs | 15 |
lr_scheduler_type | linear |
seed | 42 |
Training results
Best model results are reached in the 8th training epoch.
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.6721 | 1.0 | 70 | 0.2214 | 0.6972 | 0.7308 | 0.7136 | 0.9324 |
0.1849 | 2.0 | 140 | 0.1697 | 0.8056 | 0.8365 | 0.8208 | 0.952 |
0.0968 | 3.0 | 210 | 0.1213 | 0.882 | 0.8622 | 0.872 | 0.9728 |
0.0468 | 4.0 | 280 | 0.1107 | 0.8372 | 0.907 | 0.8708 | 0.9684 |
0.0415 | 5.0 | 350 | 0.1644 | 0.8059 | 0.8782 | 0.8405 | 0.9615 |
0.0233 | 6.0 | 420 | 0.1255 | 0.8576 | 0.8878 | 0.8724 | 0.9716 |
0.0198 | 7.0 | 490 | 0.1383 | 0.8545 | 0.8846 | 0.8693 | 0.9703 |
0.0133 | 8.0 | 560 | 0.1241 | 0.884 | 0.9038 | 0.8938 | 0.9735 |
Model Evaluation
Evaluation Dataset Distribution
NER Tag | Number of Tokens |
---|---|
0 | 6568 |
B-Person | 96 |
I-Person | 83 |
B-Organizaton | 583 |
I-Organizaton | 585 |
B-Location | 59 |
I-Location | 15 |
B-Date | 113 |
I-Date | 87 |
Time | 5 |
B-Money | 44 |
I-Money | 74 |
B-Percentage | 57 |
I-Percentage | 54 |
Evaluation Confusion Matrix
Evaluation Model Metrics
Precision | Macro-Precision | Recall | Macro-Recall | F1 | Macro-F1 | Accuracy |
---|---|---|---|---|---|---|
0.9897 | 0.9715 | 0.9897 | 0.9433 | 0.9895 | 0.9547 | 0.9897 |
Framework Versions
- Transformers 4.26.1
- PyTorch 1.13.1
- Tokenizers 0.13.2
- Downloads last month
- 14
Inference API (serverless) has been turned off for this model.
Evaluation results
- Precisionself-reported0.972
- Recallself-reported0.943
- F1self-reported0.955
- Accuracyself-reported0.990