wav2vec2-xlsr-fi-train-aug-lm-1B

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1499
  • Wer: 0.1955

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6473 0.29 400 0.2857 0.3825
0.6039 0.58 800 0.2459 0.3476
0.4757 0.87 1200 0.2338 0.3274
0.4473 1.15 1600 0.2246 0.3128
0.4322 1.44 2000 0.1962 0.2805
0.3961 1.73 2400 0.2070 0.2797
0.3642 2.02 2800 0.1790 0.2473
0.3561 2.31 3200 0.1769 0.2375
0.282 2.6 3600 0.1672 0.2263
0.2978 2.89 4000 0.1636 0.2192
0.2722 3.17 4400 0.1637 0.2102
0.2924 3.46 4800 0.1506 0.2021
0.2631 3.75 5200 0.1499 0.1955

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.1.dev0
  • Tokenizers 0.11.0
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train RASMUS/wav2vec2-xlsr-fi-train-aug-lm-1B

Evaluation results