[🏠Homepage] | [🤖 Chat with DeepSeek LLM] | [Discord] | [Wechat(微信)]
1. Introduction to DeepSeekMoE
See the Introduction for more details.
2. How to Use
Here give some examples of how to use our model.
Text Completion
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
model_name = "deepseek-ai/deepseek-moe-16b-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id
text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs.to(model.device), max_new_tokens=100)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(result)
3. License
This code repository is licensed under the MIT License. The use of DeepSeekMoE models is subject to the Model License. DeepSeekMoE supports commercial use.
See the LICENSE-MODEL for more details.
4. Contact
If you have any questions, please raise an issue or contact us at service@deepseek.com.
- Downloads last month
- 5
Inference API (serverless) does not yet support model repos that contain custom code.