QuantFactory Banner

QuantFactory/Qwen1.5-MoE-A2.7B-Wikihow-GGUF

This is quantized version of MaziyarPanahi/Qwen1.5-MoE-A2.7B-Wikihow created using llama.cpp

Original Model Card

models/Qwen1.5-MoE-A2.7B-Wikihow

This model is a fine-tuned version of Qwen/Qwen1.5-MoE-A2.7B on the HuggingFaceTB/cosmopedia dataset.

How to use it

# Use a pipeline as a high-level helper
from transformers import pipeline

pipe = pipeline("text-generation", model="MaziyarPanahi/Qwen1.5-MoE-A2.7B-Wikihow")
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("MaziyarPanahi/Qwen1.5-MoE-A2.7B-Wikihow")
model = AutoModelForCausalLM.from_pretrained("MaziyarPanahi/Qwen1.5-MoE-A2.7B-Wikihow")

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: Qwen/Qwen1.5-MoE-A2.7B
trust_remote_code: true

load_in_8bit: false
load_in_4bit: true
strict: false

# hub_model_id: MaziyarPanahi/Qwen1.5-MoE-A2.7B-Wikihow
# hf_use_auth_token: true

chat_template: chatml

datasets:
  - path: HuggingFaceTB/cosmopedia
    name: wikihow
    type:
      system_prompt: ""
      field_instruction: prompt
      field_output: text
      format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
      no_input_format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
    
dataset_prepared_path:
val_set_size: 0.0
output_dir: ./models/Qwen1.5-MoE-A2.7B-Wikihow

sequence_len: 2048
sample_packing: false
pad_to_sequence_len: false

adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.0.dev0
  • Pytorch 2.2.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 11.43
IFEval (0-Shot) 29.54
BBH (3-Shot) 15.47
MATH Lvl 5 (4-Shot) 2.87
GPQA (0-shot) 3.36
MuSR (0-shot) 2.01
MMLU-PRO (5-shot) 15.34
Downloads last month
51
GGUF
Model size
14.3B params
Architecture
qwen2moe

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for QuantFactory/Qwen1.5-MoE-A2.7B-Wikihow-GGUF

Quantized
(2)
this model

Dataset used to train QuantFactory/Qwen1.5-MoE-A2.7B-Wikihow-GGUF