Edit model card

QuantFactory/Llama-3-MAAL-8B-Instruct-v0.1-GGUF

This is quantized version of maum-ai/Llama-3-MAAL-8B-Instruct-v0.1 created using llama.cpp

Original Model Card

Llama-3-MAAL-8B-Instruct-v0.1

we release MAAL, Multilingual Adaptive Augmentation Language-model which comprises a groundbreaking fusion of multilingual capabilities and adaptive augmentation techniques.

  • Developed by: maum.ai Brain NLP. Jaeyoon Jung, Jinjoo Lee, Yongjae Lee, Dongjun Lee, Woosung Joo
  • Language(s) (NLP): Korean, English (currently, bilingual)

Model Description

Version 0.1 uses cross-lingual training to transfer instruction-following capabilities from English to Korean.

  • We Trained this model on an 8 H100-80G for 1 day with cross-lingual training dataset
  • we recommend using the fixed system prompt for the model unless you fine-tune it
๋„ˆ๋Š” ๋งˆ์Œ์—์ด์•„์ด์˜ ์ฑ—๋ด‡ MAAL์ด๋‹ค. ๊ณ ๊ฐ์˜ ์งˆ๋ฌธ์— ์นœ์ ˆํ•˜๊ฒŒ ๋‹ตํ•˜์—ฌ๋ผ.

sample inference code (GPU)

import transformers
import torch

model_id = "maum-ai/Llama-3-MAAL-8B-Instruct-v0.1"
model = transformers.AutoModelForCausalLM.from_pretrained(model_id).to("cuda")
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
streamer = transformers.TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

# we recommend using the fixed prompt for the model unless you fine-tune it
prompt = "๋„ˆ๋Š” ๋งˆ์Œ์—์ด์•„์ด์˜ ์ฑ—๋ด‡ MAAL์ด๋‹ค. ๊ณ ๊ฐ์˜ ์งˆ๋ฌธ์— ์นœ์ ˆํ•˜๊ฒŒ ๋‹ตํ•˜์—ฌ๋ผ."
instruction = "์‚ฌ๊ณผ ํ•œ ๋ฐ•์Šค์—๋Š” ์‚ฌ๊ณผ๊ฐ€ 30๊ฐœ ๋“ค์–ด์žˆ๋Š”๋ฐ, ์ฒ˜์Œ์—๋Š” ์‚ฌ๊ณผ 3๋ฐ•์Šค๊ฐ€ ์žˆ์—ˆ๊ณ , ๋‚ด๊ฐ€ ์‚ฌ๊ณผ 5๊ฐœ๋ฅผ ๋จน์—ˆ์–ด. ๋‚จ์€ ์‚ฌ๊ณผ๋Š” ์ด ๋ช‡๊ฐœ์•ผ?"

messages = [
    {"role": "system", "content": f"{prompt}"},
    {"role": "user", "content": f"{instruction}"}
    ]

inputs = tokenizer.apply_chat_template(
    messages,
    tokenize=True,
    return_tensors='pt').to("cuda")
outputs = model.generate(inputs, streamer=streamer, max_new_tokens=1024, pad_token_id=tokenizer.eos_token_id)

Evaluation Results

As the main goal of version 0.1 is to transfer instruction-following capabilities from English to Korean without utilizing continuous pre-training, etc., we select LogicKor as our evaluation method to assess the Korean instruction skills.

We compare our model with a similar parameter model (less than 13B) that has been fine-tuned on the Korean dataset. * denotes our self-report result.

Model single-turn(โ†‘) multi-turn(โ†‘) average(โ†‘)
maum-ai/Llama-3-MAAL-8B-Instruct-v0.1* 5.80 4.66 5.23
maywell/Synatra-kiqu-10.7B 5.71 4.73 5.22
yanolja/EEVE-Korean-Instruct-10.8B-v1.0 5.78 3.92 4.85
nlpai-lab/KULLM3 4.61 4.83 4.72
MLP-KTLim/llama3-Bllossom* 2.11 1.57 1.84

Limitations

Due to this model being trained on a small dataset, it has several limitations.

  • Hard to generate diverse Korean texts
  • lack of Korean knowledge & Culture (localization)
  • Not work with Image inputs and video inputs

Todo

we will solve these limitations one by one by upgrading this model like as...

  • Enhance the Korean generation through Vocabulary Expansion & Continuous pre-training. (more Korean corpus!)
  • Localize with cultural adaptation method and additional Korean knowledge data. similar idea
  • Develop a Vision Language Model that can handle both video and image inputs. similar idea
Downloads last month
200
GGUF
Model size
8.03B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model's library. Check the docs .

Model tree for QuantFactory/Llama-3-MAAL-8B-Instruct-v0.1-GGUF

Quantized
(176)
this model