QuantFactory Banner

QuantFactory/ChimeraLlama-3-8B-v3-GGUF

This is quantized version of mlabonne/ChimeraLlama-3-8B-v3 created using llama.cpp

Original Model Card

ChimeraLlama-3-8B-v3

ChimeraLlama-3-8B-v3 is a merge of the following models using LazyMergekit:

🧩 Configuration

models:
  - model: NousResearch/Meta-Llama-3-8B
    # No parameters necessary for base model
  - model: NousResearch/Meta-Llama-3-8B-Instruct
    parameters:
      density: 0.6
      weight: 0.5
  - model: mlabonne/OrpoLlama-3-8B
    parameters:
      density: 0.55
      weight: 0.05
  - model: cognitivecomputations/dolphin-2.9-llama3-8b
    parameters:
      density: 0.55
      weight: 0.05
  - model: Danielbrdz/Barcenas-Llama3-8b-ORPO
    parameters:
      density: 0.55
      weight: 0.2
  - model: VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct
    parameters:
      density: 0.55
      weight: 0.1
  - model: vicgalle/Configurable-Llama-3-8B-v0.3
    parameters:
      density: 0.55
      weight: 0.05
  - model: MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.3
    parameters:
      density: 0.55
      weight: 0.05
merge_method: dare_ties
base_model: NousResearch/Meta-Llama-3-8B
parameters:
  int8_mask: true
dtype: float16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/ChimeraLlama-3-8B-v3"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 20.53
IFEval (0-Shot) 44.08
BBH (3-Shot) 27.65
MATH Lvl 5 (4-Shot) 7.85
GPQA (0-shot) 5.59
MuSR (0-shot) 8.38
MMLU-PRO (5-shot) 29.65
Downloads last month
48
GGUF
Model size
8.03B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model's library. Check the docs .

Model tree for QuantFactory/ChimeraLlama-3-8B-v3-GGUF

Evaluation results