QuantFactory/ChimeraLlama-3-8B-v3-GGUF
This is quantized version of mlabonne/ChimeraLlama-3-8B-v3 created using llama.cpp
Original Model Card
ChimeraLlama-3-8B-v3
ChimeraLlama-3-8B-v3 is a merge of the following models using LazyMergekit:
- NousResearch/Meta-Llama-3-8B-Instruct
- mlabonne/OrpoLlama-3-8B
- cognitivecomputations/dolphin-2.9-llama3-8b
- Danielbrdz/Barcenas-Llama3-8b-ORPO
- VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct
- vicgalle/Configurable-Llama-3-8B-v0.3
- MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.3
𧩠Configuration
models:
- model: NousResearch/Meta-Llama-3-8B
# No parameters necessary for base model
- model: NousResearch/Meta-Llama-3-8B-Instruct
parameters:
density: 0.6
weight: 0.5
- model: mlabonne/OrpoLlama-3-8B
parameters:
density: 0.55
weight: 0.05
- model: cognitivecomputations/dolphin-2.9-llama3-8b
parameters:
density: 0.55
weight: 0.05
- model: Danielbrdz/Barcenas-Llama3-8b-ORPO
parameters:
density: 0.55
weight: 0.2
- model: VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct
parameters:
density: 0.55
weight: 0.1
- model: vicgalle/Configurable-Llama-3-8B-v0.3
parameters:
density: 0.55
weight: 0.05
- model: MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.3
parameters:
density: 0.55
weight: 0.05
merge_method: dare_ties
base_model: NousResearch/Meta-Llama-3-8B
parameters:
int8_mask: true
dtype: float16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/ChimeraLlama-3-8B-v3"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 20.53 |
IFEval (0-Shot) | 44.08 |
BBH (3-Shot) | 27.65 |
MATH Lvl 5 (4-Shot) | 7.85 |
GPQA (0-shot) | 5.59 |
MuSR (0-shot) | 8.38 |
MMLU-PRO (5-shot) | 29.65 |
- Downloads last month
- 48
Model tree for QuantFactory/ChimeraLlama-3-8B-v3-GGUF
Merge model
this model
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard44.080
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard27.650
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard7.850
- acc_norm on GPQA (0-shot)Open LLM Leaderboard5.590
- acc_norm on MuSR (0-shot)Open LLM Leaderboard8.380
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard29.650