AraDICE
Collection
AraDiCE: Benchmarks for Dialectal and Cultural Capabilities in LLMs
•
12 items
•
Updated
•
4
This repository includes an MSA to Egyptian machine translation model that was finetuned based on nllb-3.3B. The model was used to curate benchmarks for the AraDiCE paper (citation below). The The human post-edited benchmarks can be foundhere.
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("QCRI/AraDiCE-msa-to-egy")
model = AutoModelForSeq2SeqLM.from_pretrained("QCRI/AraDiCE-msa-to-egy")
article = "من مصلحتك أن ترحل من كازابلانكا لفترة. هناك موقع لفرنسا الحرة بالقرب من برازفيل. قد أسهل لك العبور."
inputs = tokenizer(article, return_tensors="pt")
translated_tokens = model.generate(
**inputs, forced_bos_token_id=tokenizer.convert_tokens_to_ids("arz_Arab"), max_length=30
)
translation = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
print(translation)
The model is distributed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0). The full license text can be found in the accompanying licenses_by-nc-sa_4.0_legalcode.txt
file.
Please find the paperhere.
@article{mousi2024aradicebenchmarksdialectalcultural,
title={{AraDiCE}: Benchmarks for Dialectal and Cultural Capabilities in LLMs},
author={Basel Mousi and Nadir Durrani and Fatema Ahmad and Md. Arid Hasan and Maram Hasanain and Tameem Kabbani and Fahim Dalvi and Shammur Absar Chowdhury and Firoj Alam},
year={2024},
publisher={arXiv:2409.11404},
url={https://arxiv.org/abs/2409.11404},
}
Base model
facebook/nllb-200-3.3B