Upload folder using huggingface_hub

#1
by sharpenb - opened
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
3
+ base_model: tonyshark/deepdeek-v3-1b
4
+ metrics:
5
+ - memory_disk
6
+ - memory_inference
7
+ - inference_latency
8
+ - inference_throughput
9
+ - inference_CO2_emissions
10
+ - inference_energy_consumption
11
+ tags:
12
+ - pruna-ai
13
+ ---
14
+ <!-- header start -->
15
+ <!-- 200823 -->
16
+ <div style="width: auto; margin-left: auto; margin-right: auto">
17
+ <a href="https://docs.pruna.ai/en/latest/setup/pip.html" target="_blank" rel="noopener noreferrer">
18
+ <img src="https://imgur.com/rVAgqMY.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
19
+ </a>
20
+ </div>
21
+ <!-- header end -->
22
+
23
+ [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI)
24
+ [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI)
25
+ [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
26
+ [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx)
27
+
28
+ # Simply make AI models cheaper, smaller, faster, and greener!
29
+
30
+ - Give a thumbs up if you like this model!
31
+ - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
32
+ - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
33
+ - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
34
+ - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
35
+
36
+ ## Results
37
+
38
+ ![image info](./plots.png)
39
+
40
+ **Frequently Asked Questions**
41
+ - ***How does the compression work?*** The model is compressed with llm-int8.
42
+ - ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
43
+ - ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
44
+ - ***What is the model format?*** We use safetensors.
45
+ - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
46
+ - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
47
+ - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
48
+ - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
49
+ - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
50
+
51
+ ## Setup
52
+
53
+ You can run the smashed model with these steps:
54
+
55
+ 0. Check requirements from the original repo tonyshark/deepdeek-v3-1b installed. In particular, check python, cuda, and transformers versions.
56
+ 1. Make sure that you have installed quantization related packages.
57
+ ```bash
58
+ pip install transformers accelerate bitsandbytes>0.37.0
59
+ ```
60
+ 2. Load & run the model.
61
+ ```python
62
+ from transformers import AutoModelForCausalLM, AutoTokenizer
63
+
64
+
65
+ model = AutoModelForCausalLM.from_pretrained("PrunaAI/tonyshark-deepdeek-v3-1b-bnb-8bit-smashed", trust_remote_code=True, device_map='auto')
66
+ tokenizer = AutoTokenizer.from_pretrained("tonyshark/deepdeek-v3-1b")
67
+
68
+ input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
69
+
70
+ outputs = model.generate(input_ids, max_new_tokens=216)
71
+ tokenizer.decode(outputs[0])
72
+ ```
73
+
74
+ ## Configurations
75
+
76
+ The configuration info are in `smash_config.json`.
77
+
78
+ ## Credits & License
79
+
80
+ The license of the smashed model follows the license of the original model. Please check the license of the original model tonyshark/deepdeek-v3-1b before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
81
+
82
+ ## Want to compress other models?
83
+
84
+ - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
85
+ - Do it by yourself [here](https://docs.pruna.ai/en/latest/setup/pip.html).
config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/covalent/.cache/models/tmpgdkyqa8y6py_vosv",
3
+ "architectures": [
4
+ "DeepseekV3ForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_deepseek.DeepseekV3Config",
10
+ "AutoModel": "tonyshark/deepdeek-v3-1b--modeling_deepseek.DeepseekV3Model",
11
+ "AutoModelForCausalLM": "tonyshark/deepdeek-v3-1b--modeling_deepseek.DeepseekV3ForCausalLM"
12
+ },
13
+ "aux_loss_alpha": 0.001,
14
+ "bos_token_id": 0,
15
+ "eos_token_id": 1,
16
+ "ep_size": 1,
17
+ "first_k_dense_replace": 3,
18
+ "hidden_act": "silu",
19
+ "hidden_size": 1024,
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 5376,
22
+ "kv_lora_rank": 512,
23
+ "max_position_embeddings": 163840,
24
+ "model_type": "deepseek_v3",
25
+ "moe_intermediate_size": 640,
26
+ "moe_layer_freq": 1,
27
+ "n_group": 8,
28
+ "n_routed_experts": 32,
29
+ "n_shared_experts": 1,
30
+ "norm_topk_prob": true,
31
+ "num_attention_heads": 8,
32
+ "num_experts_per_tok": 4,
33
+ "num_hidden_layers": 13,
34
+ "num_key_value_heads": 8,
35
+ "num_nextn_predict_layers": 1,
36
+ "pretraining_tp": 1,
37
+ "q_lora_rank": 1536,
38
+ "qk_nope_head_dim": 128,
39
+ "qk_rope_head_dim": 64,
40
+ "quantization_config": {
41
+ "_load_in_4bit": false,
42
+ "_load_in_8bit": true,
43
+ "bnb_4bit_compute_dtype": "bfloat16",
44
+ "bnb_4bit_quant_storage": "uint8",
45
+ "bnb_4bit_quant_type": "fp4",
46
+ "bnb_4bit_use_double_quant": false,
47
+ "llm_int8_enable_fp32_cpu_offload": false,
48
+ "llm_int8_has_fp16_weight": false,
49
+ "llm_int8_skip_modules": [
50
+ "lm_head"
51
+ ],
52
+ "llm_int8_threshold": 6.0,
53
+ "load_in_4bit": false,
54
+ "load_in_8bit": true,
55
+ "quant_method": "bitsandbytes"
56
+ },
57
+ "rms_norm_eps": 1e-06,
58
+ "rope_scaling": {
59
+ "beta_fast": 32,
60
+ "beta_slow": 1,
61
+ "factor": 40,
62
+ "mscale": 1.0,
63
+ "mscale_all_dim": 1.0,
64
+ "original_max_position_embeddings": 4096,
65
+ "type": "yarn"
66
+ },
67
+ "rope_theta": 10000,
68
+ "routed_scaling_factor": 2.5,
69
+ "scoring_func": "sigmoid",
70
+ "seq_aux": true,
71
+ "tie_word_embeddings": false,
72
+ "topk_group": 4,
73
+ "topk_method": "noaux_tc",
74
+ "torch_dtype": "float16",
75
+ "transformers_version": "4.46.2",
76
+ "use_cache": true,
77
+ "v_head_dim": 128,
78
+ "vocab_size": 129280,
79
+ "api_key": null
80
+ }
configuration_deepseek.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from transformers.utils import logging
3
+
4
+ logger = logging.get_logger(__name__)
5
+
6
+ DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
7
+ class DeepseekV3Config(PretrainedConfig):
8
+ r"""
9
+ This is the configuration class to store the configuration of a [`DeepseekV3Model`]. It is used to instantiate an DeepSeek
10
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
11
+ defaults will yield a similar configuration to that of the DeepSeek-V3.
12
+
13
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
14
+ documentation from [`PretrainedConfig`] for more information.
15
+
16
+
17
+ Args:
18
+ vocab_size (`int`, *optional*, defaults to 129280):
19
+ Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
20
+ `inputs_ids` passed when calling [`DeepseekV3Model`]
21
+ hidden_size (`int`, *optional*, defaults to 4096):
22
+ Dimension of the hidden representations.
23
+ intermediate_size (`int`, *optional*, defaults to 11008):
24
+ Dimension of the MLP representations.
25
+ moe_intermediate_size (`int`, *optional*, defaults to 1407):
26
+ Dimension of the MoE representations.
27
+ num_hidden_layers (`int`, *optional*, defaults to 32):
28
+ Number of hidden layers in the Transformer decoder.
29
+ num_nextn_predict_layers (`int`, *optional*, defaults to 1):
30
+ Number of nextn predict layers in the DeepSeekV3 Model.
31
+ num_attention_heads (`int`, *optional*, defaults to 32):
32
+ Number of attention heads for each attention layer in the Transformer decoder.
33
+ n_shared_experts (`int`, *optional*, defaults to None):
34
+ Number of shared experts, None means dense model.
35
+ n_routed_experts (`int`, *optional*, defaults to None):
36
+ Number of routed experts, None means dense model.
37
+ routed_scaling_factor (`float`, *optional*, defaults to 1.0):
38
+ Scaling factor or routed experts.
39
+ topk_method (`str`, *optional*, defaults to `gready`):
40
+ Topk method used in routed gate.
41
+ n_group (`int`, *optional*, defaults to None):
42
+ Number of groups for routed experts.
43
+ topk_group (`int`, *optional*, defaults to None):
44
+ Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
45
+ num_experts_per_tok (`int`, *optional*, defaults to None):
46
+ Number of selected experts, None means dense model.
47
+ moe_layer_freq (`int`, *optional*, defaults to 1):
48
+ The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
49
+ first_k_dense_replace (`int`, *optional*, defaults to 0):
50
+ Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
51
+ \--k dense layers--/
52
+ norm_topk_prob (`bool`, *optional*, defaults to False):
53
+ Whether to normalize the weights of the routed experts.
54
+ scoring_func (`str`, *optional*, defaults to 'softmax'):
55
+ Method of computing expert weights.
56
+ aux_loss_alpha (`float`, *optional*, defaults to 0.001):
57
+ Auxiliary loss weight coefficient.
58
+ seq_aux = (`bool`, *optional*, defaults to True):
59
+ Whether to compute the auxiliary loss for each individual sample.
60
+ num_key_value_heads (`int`, *optional*):
61
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
62
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
63
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
64
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
65
+ by meanpooling all the original heads within that group. For more details checkout [this
66
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
67
+ `num_attention_heads`.
68
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
69
+ The non-linear activation function (function or string) in the decoder.
70
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
71
+ The maximum sequence length that this model might ever be used with.
72
+ initializer_range (`float`, *optional*, defaults to 0.02):
73
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
74
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
75
+ The epsilon used by the rms normalization layers.
76
+ use_cache (`bool`, *optional*, defaults to `True`):
77
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
78
+ relevant if `config.is_decoder=True`.
79
+ pad_token_id (`int`, *optional*):
80
+ Padding token id.
81
+ bos_token_id (`int`, *optional*, defaults to 1):
82
+ Beginning of stream token id.
83
+ eos_token_id (`int`, *optional*, defaults to 2):
84
+ End of stream token id.
85
+ pretraining_tp (`int`, *optional*, defaults to 1):
86
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
87
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
88
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
89
+ issue](https://github.com/pytorch/pytorch/issues/76232).
90
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
91
+ Whether to tie weight embeddings
92
+ rope_theta (`float`, *optional*, defaults to 10000.0):
93
+ The base period of the RoPE embeddings.
94
+ rope_scaling (`Dict`, *optional*):
95
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
96
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
97
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
98
+ `max_position_embeddings` to the expected new maximum.
99
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
100
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
101
+ attention_dropout (`float`, *optional*, defaults to 0.0):
102
+ The dropout ratio for the attention probabilities.
103
+
104
+ ```python
105
+ >>> from transformers import DeepseekV3Model, DeepseekV3Config
106
+
107
+ >>> # Initializing a Deepseek-V3 style configuration
108
+ >>> configuration = DeepseekV3Config()
109
+
110
+ >>> # Accessing the model configuration
111
+ >>> configuration = model.config
112
+ ```"""
113
+
114
+ model_type = "deepseek_v3"
115
+ keys_to_ignore_at_inference = ["past_key_values"]
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=129280,
120
+ hidden_size=7168,
121
+ intermediate_size=18432,
122
+ moe_intermediate_size = 2048,
123
+ num_hidden_layers=61,
124
+ num_nextn_predict_layers=1,
125
+ num_attention_heads=128,
126
+ num_key_value_heads=128,
127
+ n_shared_experts = 1,
128
+ n_routed_experts = 256,
129
+ ep_size = 1,
130
+ routed_scaling_factor = 2.5,
131
+ kv_lora_rank = 512,
132
+ q_lora_rank = 1536,
133
+ qk_rope_head_dim = 64,
134
+ v_head_dim = 128,
135
+ qk_nope_head_dim = 128,
136
+ topk_method = 'noaux_tc',
137
+ n_group = 8,
138
+ topk_group = 4,
139
+ num_experts_per_tok = 8,
140
+ moe_layer_freq = 1,
141
+ first_k_dense_replace = 3,
142
+ norm_topk_prob = True,
143
+ scoring_func = 'sigmoid',
144
+ aux_loss_alpha = 0.001,
145
+ seq_aux = True,
146
+ hidden_act="silu",
147
+ max_position_embeddings=4096,
148
+ initializer_range=0.02,
149
+ rms_norm_eps=1e-6,
150
+ use_cache=True,
151
+ pad_token_id=None,
152
+ bos_token_id=0,
153
+ eos_token_id=1,
154
+ pretraining_tp=1,
155
+ tie_word_embeddings=False,
156
+ rope_theta=10000.0,
157
+ rope_scaling=None,
158
+ attention_bias=False,
159
+ attention_dropout=0.0,
160
+ **kwargs,
161
+ ):
162
+ self.vocab_size = vocab_size
163
+ self.max_position_embeddings = max_position_embeddings
164
+ self.hidden_size = hidden_size
165
+ self.intermediate_size = intermediate_size
166
+ self.moe_intermediate_size = moe_intermediate_size
167
+ self.num_hidden_layers = num_hidden_layers
168
+ self.num_nextn_predict_layers = num_nextn_predict_layers
169
+ self.num_attention_heads = num_attention_heads
170
+ self.n_shared_experts = n_shared_experts
171
+ self.n_routed_experts = n_routed_experts
172
+ self.ep_size = ep_size
173
+ self.routed_scaling_factor = routed_scaling_factor
174
+ self.kv_lora_rank = kv_lora_rank
175
+ self.q_lora_rank = q_lora_rank
176
+ self.qk_rope_head_dim = qk_rope_head_dim
177
+ self.v_head_dim = v_head_dim
178
+ self.qk_nope_head_dim = qk_nope_head_dim
179
+ self.topk_method = topk_method
180
+ self.n_group = n_group
181
+ self.topk_group = topk_group
182
+ self.num_experts_per_tok = num_experts_per_tok
183
+ self.moe_layer_freq = moe_layer_freq
184
+ self.first_k_dense_replace = first_k_dense_replace
185
+ self.norm_topk_prob = norm_topk_prob
186
+ self.scoring_func = scoring_func
187
+ self.aux_loss_alpha = aux_loss_alpha
188
+ self.seq_aux = seq_aux
189
+ # for backward compatibility
190
+ if num_key_value_heads is None:
191
+ num_key_value_heads = num_attention_heads
192
+
193
+ self.num_key_value_heads = num_key_value_heads
194
+ self.hidden_act = hidden_act
195
+ self.initializer_range = initializer_range
196
+ self.rms_norm_eps = rms_norm_eps
197
+ self.pretraining_tp = pretraining_tp
198
+ self.use_cache = use_cache
199
+ self.rope_theta = rope_theta
200
+ self.rope_scaling = rope_scaling
201
+ self.attention_bias = attention_bias
202
+ self.attention_dropout = attention_dropout
203
+
204
+ super().__init__(
205
+ pad_token_id=pad_token_id,
206
+ bos_token_id=bos_token_id,
207
+ eos_token_id=eos_token_id,
208
+ tie_word_embeddings=tie_word_embeddings,
209
+ **kwargs,
210
+ )
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 1,
5
+ "transformers_version": "4.46.2"
6
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cde1c4cd7c81a3d0255ed0294949d6180ee08935fec66f1193b4011730b9e20
3
+ size 1318607832
smash_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "comp_cgenerate_active": false,
3
+ "comp_ctranslate_active": false,
4
+ "comp_cwhisper_active": false,
5
+ "comp_diffusers2_active": false,
6
+ "comp_ifw_active": false,
7
+ "comp_onediff_active": false,
8
+ "comp_step_caching_active": false,
9
+ "comp_torch_compile_active": false,
10
+ "comp_ws2t_active": false,
11
+ "comp_x-fast_active": false,
12
+ "prune_torch-structured_active": false,
13
+ "quant_aqlm_active": false,
14
+ "quant_awq_active": false,
15
+ "quant_gptq_active": false,
16
+ "quant_half_active": false,
17
+ "quant_hqq_active": false,
18
+ "quant_llm-int8_active": true,
19
+ "quant_quanto_active": false,
20
+ "quant_torch_dynamic_active": false,
21
+ "quant_torch_static_active": false,
22
+ "quant_llm-int8_compute_dtype": "bfloat16",
23
+ "quant_llm-int8_double_quant": false,
24
+ "quant_llm-int8_enable_fp32_cpu_offload": false,
25
+ "quant_llm-int8_has_fp16_weight": false,
26
+ "quant_llm-int8_quant_type": "fp4",
27
+ "quant_llm-int8_threshold": 6.0,
28
+ "quant_llm-int8_weight_bits": 8,
29
+ "max_batch_size": 1,
30
+ "device": "cuda",
31
+ "cache_dir": "/covalent/.cache/models/tmpgdkyqa8y",
32
+ "task": "",
33
+ "save_load_fn": "bitsandbytes",
34
+ "save_load_fn_args": {}
35
+ }