File size: 4,854 Bytes
4c07e87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
"""GPT Blocks used for the GPT Model."""

from typing import Any, Dict, Optional, Tuple
import torch
import torch.nn as nn
from .attention import ATTN_CLASS_REGISTRY
from .ffn import FFN_CLASS_REGISTRY, build_ffn
from .norm import NORM_CLASS_REGISTRY

try:
    from flash_attn.bert_padding import unpad_input, pad_input
except:
    (unpad_input, pad_input) = (None, None)
attn_config_defaults: Dict = {
    "attn_type": "multihead_attention",
    "attn_pdrop": 0.0,
    "attn_impl": "flash",
    "qk_ln": True,
    "qk_gn": False,
    "clip_qkv": None,
    "softmax_scale": None,
    "prefix_lm": False,
    "attn_uses_sequence_id": False,
    "sliding_window_size": -1,
    "alibi": False,
    "alibi_bias_max": 8,
    "rope": False,
    "rope_theta": 10000,
    "rope_impl": "dail",
    "rope_dail_config": {
        "type": "original",
        "pos_idx_in_fp32": True,
        "xpos_scale_base": 512,
    },
    "rope_hf_config": {"type": "no_scaling", "factor": 1.0},
}


class MPTBlock(nn.Module):

    def __init__(
        self,
        d_model: int,
        n_heads: int,
        expansion_ratio: int,
        attn_config: Optional[Dict] = None,
        ffn_config: Optional[Dict] = None,
        resid_pdrop: float = 0.0,
        norm_type: str = "low_precision_layernorm",
        fc_type: str = "torch",
        device: Optional[str] = None,
        no_bias: bool = False,
        use_pad_tok_in_ffn: bool = True,
        **kwargs: Any
    ):
        if attn_config is None:
            attn_config = attn_config_defaults
        if ffn_config is None:
            ffn_config = {"ffn_type": "mptmlp"}
        del kwargs
        super().__init__()
        norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
        assert isinstance(attn_config["attn_type"], str)
        attn_class = ATTN_CLASS_REGISTRY[attn_config["attn_type"]]
        args_to_exclude_in_attn_class = {
            "attn_type",
            "prefix_lm",
            "alibi",
            "attn_uses_sequence_id",
            "alibi_bias_max",
            "rope",
            "rope_theta",
            "rope_impl",
            "rope_dail_config",
            "rope_hf_config",
        }
        attn_config_subset_for_attn_class = {
            k: v
            for (k, v) in attn_config.items()
            if k not in args_to_exclude_in_attn_class
        }
        self.norm_1 = norm_class(d_model, device=device)
        self.attn = attn_class(
            d_model=d_model,
            n_heads=n_heads,
            fc_type=fc_type,
            device=device,
            **attn_config_subset_for_attn_class,
            bias=not no_bias
        )
        self.norm_2 = None
        if not getattr(FFN_CLASS_REGISTRY[ffn_config["ffn_type"]], "_has_norm", False):
            self.norm_2 = norm_class(d_model, device=device)
        self.ffn = build_ffn(
            d_model=d_model,
            expansion_ratio=expansion_ratio,
            device=device,
            bias=not no_bias,
            **ffn_config
        )
        self.resid_attn_dropout = nn.Dropout(resid_pdrop)
        self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
        self.use_pad_tok_in_ffn = use_pad_tok_in_ffn

    def forward(
        self,
        x: torch.Tensor,
        past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        attn_bias: Optional[torch.Tensor] = None,
        rotary_emb_w_meta_info: Optional[Dict] = None,
        attention_mask: Optional[torch.ByteTensor] = None,
        is_causal: bool = True,
        output_attentions: bool = False,
        alibi_slopes: Optional[torch.Tensor] = None,
        flash_attn_padding_info: Optional[dict[str, torch.Tensor]] = None,
    ) -> Tuple[
        torch.Tensor,
        Optional[torch.Tensor],
        Optional[Tuple[torch.Tensor, torch.Tensor]],
    ]:
        a = self.norm_1(x)
        (b, attn_weights, past_key_value) = self.attn(
            a,
            past_key_value=past_key_value,
            attn_bias=attn_bias,
            rotary_emb_w_meta_info=rotary_emb_w_meta_info,
            attention_mask=attention_mask,
            is_causal=is_causal,
            needs_weights=output_attentions,
            alibi_slopes=alibi_slopes,
            flash_attn_padding_info=flash_attn_padding_info,
        )
        x = x + self.resid_attn_dropout(b)
        m = x
        if self.norm_2 is not None:
            m = self.norm_2(x)
        (batch_size, seq_len) = m.size()[:2]
        indices = None
        if not self.use_pad_tok_in_ffn:
            assert unpad_input is not None
            (m, indices, _, _) = unpad_input(m, attention_mask)
        n = self.ffn(m)
        if not self.use_pad_tok_in_ffn:
            assert pad_input is not None
            n = pad_input(n, indices, batch_size, seq_len)
        x = x + self.resid_ffn_dropout(n)
        return (x, attn_weights, past_key_value)