t2p-mbart-large-cc25-orfeo
t2p-mbart-large-cc25-orfeo is a text-to-pictograms translation model built by fine-tuning the mbart-large-cc25 model on a dataset of pairs of transcriptions / pictogram token sequence (each token is linked to a pictogram image from ARASAAC). The model is used only for inference.
Training details
The model was trained with Fairseq.
Datasets
The Propicto-orféo dataset is used, which was created from the CEFC-Orféo corpus. This dataset was presented in the research paper titled "A Multimodal French Corpus of Aligned Speech, Text, and Pictogram Sequences for Speech-to-Pictogram Machine Translation" at LREC-Coling 2024. The dataset was split into training, validation, and test sets.
Split | Number of utterances |
---|---|
train | 231,374 |
valid | 28,796 |
test | 29,009 |
Parameters
This is the arguments in the training pipeline :
fairseq-train $DATA \
--encoder-normalize-before --decoder-normalize-before \
--arch mbart_large --layernorm-embedding \
--task translation_from_pretrained_bart \
--source-lang fr --target-lang frp \
--criterion label_smoothed_cross_entropy --label-smoothing 0.2 \
--optimizer adam --adam-eps 1e-06 --adam-betas '(0.9, 0.98)' \
--lr-scheduler polynomial_decay --lr 3e-05 --warmup-updates 2500 --total-num-update 40000 \
--dropout 0.3 --attention-dropout 0.1 --weight-decay 0.0 \
--max-tokens 1024 --update-freq 2 \
--save-interval 1 --save-interval-updates 5000 --keep-interval-updates 5 \
--seed 222 --log-format simple --log-interval 2 \
--langs fr \
--ddp-backend legacy_ddp \
--max-epoch 40 \
--save-dir models/checkpoints/mt_mbart_fr_frp_orfeo \
--keep-best-checkpoints 5 \
--keep-last-epochs 5
Evaluation
The model was evaluated with sacreBLEU, where we compared the reference pictogram translation with the model hypothesis.
fairseq-generate orfeo_data/data/ \
--path $model_dir/checkpoint_best.pt \
--task translation_from_pretrained_bart \
--gen-subset test \
-t frp -s fr \
--bpe 'sentencepiece' --sentencepiece-model mbart.cc25.v2/sentence.bpe.model \
--sacrebleu \
--batch-size 32 --langs $langs > out.txt
The output file prints the following information :
S-27886 ça sera tout madame<unk>
T-27886 prochain celle-là être tout monsieur
H-27886 -0.2824968993663788 ▁prochain ▁celle - là ▁être ▁tout ▁monsieur
D-27886 -0.2824968993663788 prochain celle-là être tout monsieur
P-27886 -0.5773 -0.1780 -0.2587 -0.2361 -0.2726 -0.3167 -0.1312 -0.3103 -0.2615
Generate test with beam=5: BLEU4 = 75.62, 85.7/78.9/73.9/69.3 (BP=0.986, ratio=0.986, syslen=407923, reflen=413636)
Results
Comparison to other translation models :
Model | validation | test |
---|---|---|
t2p-t5-large-orféo | 85.2 | 85.8 |
t2p-nmt-orféo | 87.2 | 87.4 |
t2p-mbart-large-cc25-orfeo | 75.2 | 75.6 |
t2p-nllb-200-distilled-600M-orfeo | 86.3 | 86.9 |
Environmental Impact
Fine-tuning was performed using a single Nvidia V100 GPU with 32 GB of memory which took 18 hours in total.
Using t2p-mbart-large-cc25-orfeo model
The scripts to use the t2p-mbart-large-cc25-orfeo model are located in the speech-to-pictograms GitHub repository.
Information
- Language(s): French
- License: Apache-2.0
- Developed by: Cécile Macaire
- Funded by
- GENCI-IDRIS (Grant 2023-AD011013625R1)
- PROPICTO ANR-20-CE93-0005
- Authors
- Cécile Macaire
- Chloé Dion
- Emmanuelle Esperança-Rodier
- Benjamin Lecouteux
- Didier Schwab
Citation
If you use this model for your own research work, please cite as follows:
@inproceedings{macaire_jeptaln2024,
title = {{Approches cascade et de bout-en-bout pour la traduction automatique de la parole en pictogrammes}},
author = {Macaire, C{\'e}cile and Dion, Chlo{\'e} and Schwab, Didier and Lecouteux, Benjamin and Esperan{\c c}a-Rodier, Emmanuelle},
url = {https://inria.hal.science/hal-04623007},
booktitle = {{35{\`e}mes Journ{\'e}es d'{\'E}tudes sur la Parole (JEP 2024) 31{\`e}me Conf{\'e}rence sur le Traitement Automatique des Langues Naturelles (TALN 2024) 26{\`e}me Rencontre des {\'E}tudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RECITAL 2024)}},
address = {Toulouse, France},
publisher = {{ATALA \& AFPC}},
volume = {1 : articles longs et prises de position},
pages = {22-35},
year = {2024}
}