computer_parts_classifier-model
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.5117
- Accuracy: 0.8138
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.97 | 9 | 1.0525 | 0.5517 |
1.0645 | 1.95 | 18 | 0.9405 | 0.6 |
0.9405 | 2.92 | 27 | 0.7902 | 0.7034 |
0.7669 | 4.0 | 37 | 0.6923 | 0.7379 |
0.6008 | 4.97 | 46 | 0.6152 | 0.7862 |
0.5142 | 5.95 | 55 | 0.5639 | 0.7931 |
0.394 | 6.92 | 64 | 0.5640 | 0.8 |
0.3649 | 8.0 | 74 | 0.5181 | 0.7862 |
0.279 | 8.97 | 83 | 0.5094 | 0.8345 |
0.2549 | 9.95 | 92 | 0.4882 | 0.8276 |
0.1925 | 10.92 | 101 | 0.5041 | 0.8 |
0.2185 | 12.0 | 111 | 0.5195 | 0.8138 |
0.1921 | 12.97 | 120 | 0.5170 | 0.8 |
0.1921 | 13.95 | 129 | 0.5846 | 0.7793 |
0.15 | 14.92 | 138 | 0.5217 | 0.8207 |
0.1798 | 16.0 | 148 | 0.5421 | 0.7862 |
0.1729 | 16.97 | 157 | 0.5516 | 0.8207 |
0.1459 | 17.95 | 166 | 0.5438 | 0.7931 |
0.1701 | 18.92 | 175 | 0.5043 | 0.8345 |
0.1487 | 19.46 | 180 | 0.5117 | 0.8138 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 20
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for PhuntshoYoezer/computer_parts_classifier-model
Base model
google/vit-base-patch16-224-in21k