SentenceTransformer based on BAAI/bge-m3
This is a sentence-transformers model finetuned from BAAI/bge-m3 on the en-th dataset. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 544 tokens
- Output Dimensionality: 512 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- en-th
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 544, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 1024, 'out_features': 512, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'what kind of preferences did you have in mind for the italian restaurant you wanna go to?',
'โดยที่ไม่ทำให้โทรศัพท์ดูใหญ่เทอะทะจนเกินไป แต่เคสนี้ไม่ตอบโจทย์ มันเป็นแค่เคสพลาสติกบางสุดๆ ที่แทบไม่มีอะไรบุกันกระแทก ยกเว้นส่วนขอบบนเครื่อง ส่วนหนึ่งเป็นเพราะเคสพอดีจนแทบไม่มีที่เหลือ แต่หลักๆน่าจะเป็นเพราะเคสไม่ได้เจาะรูไว้สำหรับเสียบสายชาร์จ',
'ขอให้เป็นวันที่ดีค่ะ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Knowledge Distillation
- Dataset:
en-th
- Evaluated with
MSEEvaluator
Metric | Value |
---|---|
negative_mse | -4.411 |
Translation
- Dataset:
en-th
- Evaluated with
TranslationEvaluator
Metric | Value |
---|---|
src2trg_accuracy | 0.4276 |
trg2src_accuracy | 0.4026 |
mean_accuracy | 0.4151 |
Semantic Similarity
- Dataset:
sts17-en-en-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7552 |
spearman_cosine | 0.7964 |
pearson_manhattan | 0.8293 |
spearman_manhattan | 0.8311 |
pearson_euclidean | 0.8146 |
spearman_euclidean | 0.818 |
pearson_dot | 0.2645 |
spearman_dot | 0.2604 |
pearson_max | 0.8293 |
spearman_max | 0.8311 |
Training Details
Training Dataset
en-th
- Dataset: en-th
- Size: 903,970 training samples
- Columns:
english
,non_english
, andlabel
- Approximate statistics based on the first 1000 samples:
english non_english label type string string list details - min: 5 tokens
- mean: 21.5 tokens
- max: 91 tokens
- min: 3 tokens
- mean: 21.67 tokens
- max: 156 tokens
- size: 512 elements
- Samples:
english non_english label There is obviously a situation, when suddenly and spontaneously decide to go from south to north Cyprus, not preparing for this completely in terms of currency exchange. You do not have anything to worry about because you can very quickly to exchange currency in any of the Cypriot cantors, or such service is offered in many places - shops, hotels and even gas stations.
มีสถานการณ์ที่เห็นได้ชัดเมื่อฉับพลันและธรรมชาติตัดสินใจที่จะไปจากทิศใต้ไปทางทิศเหนือไซปรัส, ไม่ได้เตรียมความพร้อมสำหรับนี้อย่างสมบูรณ์ในแง่ของการแลกเปลี่ยนเงินตราต่างประเทศ คุณไม่ได้มีอะไรต้องกังวลเกี่ยวกับเพราะคุณสามารถได้อย่างรวดเร็วเพื่อการแลกเปลี่ยนสกุลเงินในใด ๆ ของ cantors ไซปรัสหรือบริการดังกล่าวจะถูกนำเสนอในหลายสถานที่ -- โรงแรม, ร้านค้าและแม้แต่สถานีบริการน้ำมัน
[0.08994044363498688, -0.16606739163398743, -0.19563019275665283, 0.16979621350765228, 0.36533093452453613, ...]
Alright. I've booked you for 7:00 this Thursday evening at Giorgio's on Pine. I also mentioned that you are celebrating an anniversary.
มันถูกมากเกินกว่าที่จะส่งคืนหรือเปลี่ยนเป็นอันอื่นฉันไม่แนะนำค่ะ ของถูกก็แบบนี้
[0.49537181854248047, 0.06981103122234344, -0.08879007399082184, -0.3542495667934418, -0.1312403678894043, ...]
s that?
นั่นอะไร?
[0.19816944003105164, -0.08889764547348022, 0.06616806238889694, -0.04803535342216492, 0.18784472346305847, ...]
- Loss:
MSELoss
Evaluation Dataset
en-th
- Dataset: en-th
- Size: 5,000 evaluation samples
- Columns:
english
,non_english
, andlabel
- Approximate statistics based on the first 1000 samples:
english non_english label type string string list details - min: 5 tokens
- mean: 22.69 tokens
- max: 101 tokens
- min: 4 tokens
- mean: 22.05 tokens
- max: 165 tokens
- size: 512 elements
- Samples:
english non_english label 3 medium pizzas, 1 olives and chicken, 1 pepperoni and sausage, and 1 meat lovers.
ฉันชอบความจริงที่ว่ามันกะทัดรัดเช่นกัน
[-0.058319706469774246, 0.34078648686408997, -0.21020987629890442, -0.46271052956581116, -0.08354806154966354, ...]
Yay write super long essay, quite satisfying! See how ba! Still haveto study for exams lol
เขียนเรียงความที่โคตรยาว ค่อนข้างพอใจอยู่นะ ดูว่ายังไง ต้องศึกษาเพื่อสอบอ่ะ
[-0.36296623945236206, 0.23631885647773743, -0.10706634074449539, -0.01760946214199066, -0.25405243039131165, ...]
no problems, how many people and what time?
55.7 ซม.
[0.2116040736436844, -0.050325457006692886, -0.018645018339157104, -0.14866583049297333, 0.18265873193740845, ...]
- Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 10warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | en-th loss | en-th_mean_accuracy | en-th_negative_mse | sts17-en-en-test_spearman_max |
---|---|---|---|---|---|---|
0.0018 | 100 | 0.4339 | - | - | - | - |
0.0035 | 200 | 0.4325 | - | - | - | - |
0.0053 | 300 | 0.414 | - | - | - | - |
0.0071 | 400 | 0.3828 | - | - | - | - |
0.0088 | 500 | 0.3478 | - | - | - | - |
0.0106 | 600 | 0.3033 | - | - | - | - |
0.0124 | 700 | 0.2495 | - | - | - | - |
0.0142 | 800 | 0.1806 | - | - | - | - |
0.0159 | 900 | 0.1279 | - | - | - | - |
0.0177 | 1000 | 0.1004 | - | - | - | - |
0.0195 | 1100 | 0.0853 | - | - | - | - |
0.0212 | 1200 | 0.0779 | - | - | - | - |
0.0230 | 1300 | 0.0735 | - | - | - | - |
0.0248 | 1400 | 0.0716 | - | - | - | - |
0.0265 | 1500 | 0.0698 | - | - | - | - |
0.0283 | 1600 | 0.0682 | - | - | - | - |
0.0301 | 1700 | 0.068 | - | - | - | - |
0.0319 | 1800 | 0.0667 | - | - | - | - |
0.0336 | 1900 | 0.0657 | - | - | - | - |
0.0354 | 2000 | 0.0653 | - | - | - | - |
0.0372 | 2100 | 0.0655 | - | - | - | - |
0.0389 | 2200 | 0.0637 | - | - | - | - |
0.0407 | 2300 | 0.0632 | - | - | - | - |
0.0425 | 2400 | 0.0625 | - | - | - | - |
0.0442 | 2500 | 0.0621 | - | - | - | - |
0.0460 | 2600 | 0.0615 | - | - | - | - |
0.0478 | 2700 | 0.0599 | - | - | - | - |
0.0496 | 2800 | 0.0604 | - | - | - | - |
0.0513 | 2900 | 0.0596 | - | - | - | - |
0.0531 | 3000 | 0.0591 | - | - | - | - |
0.0549 | 3100 | 0.0592 | - | - | - | - |
0.0566 | 3200 | 0.0587 | - | - | - | - |
0.0584 | 3300 | 0.0575 | - | - | - | - |
0.0602 | 3400 | 0.0575 | - | - | - | - |
0.0619 | 3500 | 0.0571 | - | - | - | - |
0.0637 | 3600 | 0.0567 | - | - | - | - |
0.0655 | 3700 | 0.057 | - | - | - | - |
0.0673 | 3800 | 0.0569 | - | - | - | - |
0.0690 | 3900 | 0.0567 | - | - | - | - |
0.0708 | 4000 | 0.0571 | - | - | - | - |
0.0726 | 4100 | 0.0564 | - | - | - | - |
0.0743 | 4200 | 0.0561 | - | - | - | - |
0.0761 | 4300 | 0.0557 | - | - | - | - |
0.0779 | 4400 | 0.0563 | - | - | - | - |
0.0796 | 4500 | 0.0558 | - | - | - | - |
0.0814 | 4600 | 0.0551 | - | - | - | - |
0.0832 | 4700 | 0.0555 | - | - | - | - |
0.0850 | 4800 | 0.0554 | - | - | - | - |
0.0867 | 4900 | 0.0553 | - | - | - | - |
0.0885 | 5000 | 0.0545 | 0.0519 | 0.0714 | -5.5590 | 0.5033 |
0.0903 | 5100 | 0.055 | - | - | - | - |
0.0920 | 5200 | 0.0552 | - | - | - | - |
0.0938 | 5300 | 0.0539 | - | - | - | - |
0.0956 | 5400 | 0.0537 | - | - | - | - |
0.0973 | 5500 | 0.0537 | - | - | - | - |
0.0991 | 5600 | 0.054 | - | - | - | - |
0.1009 | 5700 | 0.0543 | - | - | - | - |
0.1027 | 5800 | 0.0536 | - | - | - | - |
0.1044 | 5900 | 0.0536 | - | - | - | - |
0.1062 | 6000 | 0.053 | - | - | - | - |
0.1080 | 6100 | 0.0527 | - | - | - | - |
0.1097 | 6200 | 0.0531 | - | - | - | - |
0.1115 | 6300 | 0.0537 | - | - | - | - |
0.1133 | 6400 | 0.0526 | - | - | - | - |
0.1150 | 6500 | 0.0528 | - | - | - | - |
0.1168 | 6600 | 0.0527 | - | - | - | - |
0.1186 | 6700 | 0.052 | - | - | - | - |
0.1204 | 6800 | 0.0527 | - | - | - | - |
0.1221 | 6900 | 0.0521 | - | - | - | - |
0.1239 | 7000 | 0.0513 | - | - | - | - |
0.1257 | 7100 | 0.0517 | - | - | - | - |
0.1274 | 7200 | 0.0514 | - | - | - | - |
0.1292 | 7300 | 0.052 | - | - | - | - |
0.1310 | 7400 | 0.0511 | - | - | - | - |
0.1327 | 7500 | 0.0502 | - | - | - | - |
0.1345 | 7600 | 0.0511 | - | - | - | - |
0.1363 | 7700 | 0.0506 | - | - | - | - |
0.1381 | 7800 | 0.0509 | - | - | - | - |
0.1398 | 7900 | 0.0507 | - | - | - | - |
0.1416 | 8000 | 0.0507 | - | - | - | - |
0.1434 | 8100 | 0.0506 | - | - | - | - |
0.1451 | 8200 | 0.0503 | - | - | - | - |
0.1469 | 8300 | 0.0501 | - | - | - | - |
0.1487 | 8400 | 0.0505 | - | - | - | - |
0.1504 | 8500 | 0.0497 | - | - | - | - |
0.1522 | 8600 | 0.0501 | - | - | - | - |
0.1540 | 8700 | 0.049 | - | - | - | - |
0.1558 | 8800 | 0.0496 | - | - | - | - |
0.1575 | 8900 | 0.0495 | - | - | - | - |
0.1593 | 9000 | 0.0491 | - | - | - | - |
0.1611 | 9100 | 0.0494 | - | - | - | - |
0.1628 | 9200 | 0.0493 | - | - | - | - |
0.1646 | 9300 | 0.049 | - | - | - | - |
0.1664 | 9400 | 0.0484 | - | - | - | - |
0.1681 | 9500 | 0.0493 | - | - | - | - |
0.1699 | 9600 | 0.0491 | - | - | - | - |
0.1717 | 9700 | 0.049 | - | - | - | - |
0.1735 | 9800 | 0.0483 | - | - | - | - |
0.1752 | 9900 | 0.0485 | - | - | - | - |
0.1770 | 10000 | 0.0488 | 0.0465 | 0.2097 | -5.2368 | 0.5897 |
0.1788 | 10100 | 0.0477 | - | - | - | - |
0.1805 | 10200 | 0.0477 | - | - | - | - |
0.1823 | 10300 | 0.0485 | - | - | - | - |
0.1841 | 10400 | 0.0477 | - | - | - | - |
0.1858 | 10500 | 0.0481 | - | - | - | - |
0.1876 | 10600 | 0.0475 | - | - | - | - |
0.1894 | 10700 | 0.0471 | - | - | - | - |
0.1912 | 10800 | 0.0478 | - | - | - | - |
0.1929 | 10900 | 0.0468 | - | - | - | - |
0.1947 | 11000 | 0.0474 | - | - | - | - |
0.1965 | 11100 | 0.0471 | - | - | - | - |
0.1982 | 11200 | 0.0475 | - | - | - | - |
0.2000 | 11300 | 0.0467 | - | - | - | - |
0.2018 | 11400 | 0.0467 | - | - | - | - |
0.2035 | 11500 | 0.0472 | - | - | - | - |
0.2053 | 11600 | 0.0468 | - | - | - | - |
0.2071 | 11700 | 0.0466 | - | - | - | - |
0.2089 | 11800 | 0.0463 | - | - | - | - |
0.2106 | 11900 | 0.0464 | - | - | - | - |
0.2124 | 12000 | 0.0456 | - | - | - | - |
0.2142 | 12100 | 0.0467 | - | - | - | - |
0.2159 | 12200 | 0.0466 | - | - | - | - |
0.2177 | 12300 | 0.0462 | - | - | - | - |
0.2195 | 12400 | 0.0466 | - | - | - | - |
0.2212 | 12500 | 0.0465 | - | - | - | - |
0.2230 | 12600 | 0.0456 | - | - | - | - |
0.2248 | 12700 | 0.0454 | - | - | - | - |
0.2266 | 12800 | 0.0456 | - | - | - | - |
0.2283 | 12900 | 0.0451 | - | - | - | - |
0.2301 | 13000 | 0.0458 | - | - | - | - |
0.2319 | 13100 | 0.0458 | - | - | - | - |
0.2336 | 13200 | 0.0456 | - | - | - | - |
0.2354 | 13300 | 0.0449 | - | - | - | - |
0.2372 | 13400 | 0.0458 | - | - | - | - |
0.2389 | 13500 | 0.0448 | - | - | - | - |
0.2407 | 13600 | 0.0452 | - | - | - | - |
0.2425 | 13700 | 0.0453 | - | - | - | - |
0.2443 | 13800 | 0.046 | - | - | - | - |
0.2460 | 13900 | 0.0455 | - | - | - | - |
0.2478 | 14000 | 0.0448 | - | - | - | - |
0.2496 | 14100 | 0.0448 | - | - | - | - |
0.2513 | 14200 | 0.0446 | - | - | - | - |
0.2531 | 14300 | 0.045 | - | - | - | - |
0.2549 | 14400 | 0.0444 | - | - | - | - |
0.2566 | 14500 | 0.0447 | - | - | - | - |
0.2584 | 14600 | 0.0445 | - | - | - | - |
0.2602 | 14700 | 0.0446 | - | - | - | - |
0.2620 | 14800 | 0.0446 | - | - | - | - |
0.2637 | 14900 | 0.0441 | - | - | - | - |
0.2655 | 15000 | 0.0441 | 0.0426 | 0.3042 | -5.0075 | 0.6642 |
0.2673 | 15100 | 0.0441 | - | - | - | - |
0.2690 | 15200 | 0.0435 | - | - | - | - |
0.2708 | 15300 | 0.0447 | - | - | - | - |
0.2726 | 15400 | 0.044 | - | - | - | - |
0.2743 | 15500 | 0.0447 | - | - | - | - |
0.2761 | 15600 | 0.0435 | - | - | - | - |
0.2779 | 15700 | 0.043 | - | - | - | - |
0.2797 | 15800 | 0.0434 | - | - | - | - |
0.2814 | 15900 | 0.0433 | - | - | - | - |
0.2832 | 16000 | 0.043 | - | - | - | - |
0.2850 | 16100 | 0.0435 | - | - | - | - |
0.2867 | 16200 | 0.0439 | - | - | - | - |
0.2885 | 16300 | 0.0437 | - | - | - | - |
0.2903 | 16400 | 0.0435 | - | - | - | - |
0.2920 | 16500 | 0.0435 | - | - | - | - |
0.2938 | 16600 | 0.0438 | - | - | - | - |
0.2956 | 16700 | 0.0431 | - | - | - | - |
0.2974 | 16800 | 0.043 | - | - | - | - |
0.2991 | 16900 | 0.0425 | - | - | - | - |
0.3009 | 17000 | 0.0434 | - | - | - | - |
0.3027 | 17100 | 0.0425 | - | - | - | - |
0.3044 | 17200 | 0.0433 | - | - | - | - |
0.3062 | 17300 | 0.0435 | - | - | - | - |
0.3080 | 17400 | 0.0431 | - | - | - | - |
0.3097 | 17500 | 0.0421 | - | - | - | - |
0.3115 | 17600 | 0.043 | - | - | - | - |
0.3133 | 17700 | 0.0429 | - | - | - | - |
0.3150 | 17800 | 0.0426 | - | - | - | - |
0.3168 | 17900 | 0.0423 | - | - | - | - |
0.3186 | 18000 | 0.0424 | - | - | - | - |
0.3204 | 18100 | 0.0428 | - | - | - | - |
0.3221 | 18200 | 0.0417 | - | - | - | - |
0.3239 | 18300 | 0.0428 | - | - | - | - |
0.3257 | 18400 | 0.0421 | - | - | - | - |
0.3274 | 18500 | 0.0424 | - | - | - | - |
0.3292 | 18600 | 0.043 | - | - | - | - |
0.3310 | 18700 | 0.0421 | - | - | - | - |
0.3327 | 18800 | 0.0413 | - | - | - | - |
0.3345 | 18900 | 0.0417 | - | - | - | - |
0.3363 | 19000 | 0.0428 | - | - | - | - |
0.3381 | 19100 | 0.0421 | - | - | - | - |
0.3398 | 19200 | 0.042 | - | - | - | - |
0.3416 | 19300 | 0.0417 | - | - | - | - |
0.3434 | 19400 | 0.042 | - | - | - | - |
0.3451 | 19500 | 0.0416 | - | - | - | - |
0.3469 | 19600 | 0.0413 | - | - | - | - |
0.3487 | 19700 | 0.0415 | - | - | - | - |
0.3504 | 19800 | 0.0415 | - | - | - | - |
0.3522 | 19900 | 0.0418 | - | - | - | - |
0.3540 | 20000 | 0.0412 | 0.0399 | 0.3538 | -4.8579 | 0.7194 |
0.3558 | 20100 | 0.041 | - | - | - | - |
0.3575 | 20200 | 0.0414 | - | - | - | - |
0.3593 | 20300 | 0.041 | - | - | - | - |
0.3611 | 20400 | 0.0417 | - | - | - | - |
0.3628 | 20500 | 0.0413 | - | - | - | - |
0.3646 | 20600 | 0.0407 | - | - | - | - |
0.3664 | 20700 | 0.0406 | - | - | - | - |
0.3681 | 20800 | 0.0412 | - | - | - | - |
0.3699 | 20900 | 0.0413 | - | - | - | - |
0.3717 | 21000 | 0.0408 | - | - | - | - |
0.3735 | 21100 | 0.0412 | - | - | - | - |
0.3752 | 21200 | 0.0408 | - | - | - | - |
0.3770 | 21300 | 0.041 | - | - | - | - |
0.3788 | 21400 | 0.0402 | - | - | - | - |
0.3805 | 21500 | 0.0405 | - | - | - | - |
0.3823 | 21600 | 0.04 | - | - | - | - |
0.3841 | 21700 | 0.0398 | - | - | - | - |
0.3858 | 21800 | 0.0409 | - | - | - | - |
0.3876 | 21900 | 0.0408 | - | - | - | - |
0.3894 | 22000 | 0.041 | - | - | - | - |
0.3912 | 22100 | 0.0409 | - | - | - | - |
0.3929 | 22200 | 0.0405 | - | - | - | - |
0.3947 | 22300 | 0.0401 | - | - | - | - |
0.3965 | 22400 | 0.0409 | - | - | - | - |
0.3982 | 22500 | 0.0403 | - | - | - | - |
0.4000 | 22600 | 0.041 | - | - | - | - |
0.4018 | 22700 | 0.041 | - | - | - | - |
0.4035 | 22800 | 0.0408 | - | - | - | - |
0.4053 | 22900 | 0.0396 | - | - | - | - |
0.4071 | 23000 | 0.0403 | - | - | - | - |
0.4089 | 23100 | 0.0402 | - | - | - | - |
0.4106 | 23200 | 0.0393 | - | - | - | - |
0.4124 | 23300 | 0.0402 | - | - | - | - |
0.4142 | 23400 | 0.0404 | - | - | - | - |
0.4159 | 23500 | 0.0406 | - | - | - | - |
0.4177 | 23600 | 0.0398 | - | - | - | - |
0.4195 | 23700 | 0.0398 | - | - | - | - |
0.4212 | 23800 | 0.0394 | - | - | - | - |
0.4230 | 23900 | 0.0394 | - | - | - | - |
0.4248 | 24000 | 0.0398 | - | - | - | - |
0.4266 | 24100 | 0.0399 | - | - | - | - |
0.4283 | 24200 | 0.0396 | - | - | - | - |
0.4301 | 24300 | 0.0401 | - | - | - | - |
0.4319 | 24400 | 0.0396 | - | - | - | - |
0.4336 | 24500 | 0.0403 | - | - | - | - |
0.4354 | 24600 | 0.0394 | - | - | - | - |
0.4372 | 24700 | 0.0403 | - | - | - | - |
0.4389 | 24800 | 0.0393 | - | - | - | - |
0.4407 | 24900 | 0.039 | - | - | - | - |
0.4425 | 25000 | 0.0393 | 0.0382 | 0.3921 | -4.7803 | 0.7439 |
0.4443 | 25100 | 0.0389 | - | - | - | - |
0.4460 | 25200 | 0.0396 | - | - | - | - |
0.4478 | 25300 | 0.0391 | - | - | - | - |
0.4496 | 25400 | 0.0393 | - | - | - | - |
0.4513 | 25500 | 0.0395 | - | - | - | - |
0.4531 | 25600 | 0.0396 | - | - | - | - |
0.4549 | 25700 | 0.0392 | - | - | - | - |
0.4566 | 25800 | 0.0386 | - | - | - | - |
0.4584 | 25900 | 0.0389 | - | - | - | - |
0.4602 | 26000 | 0.0381 | - | - | - | - |
0.4620 | 26100 | 0.0393 | - | - | - | - |
0.4637 | 26200 | 0.0389 | - | - | - | - |
0.4655 | 26300 | 0.0388 | - | - | - | - |
0.4673 | 26400 | 0.0391 | - | - | - | - |
0.4690 | 26500 | 0.0387 | - | - | - | - |
0.4708 | 26600 | 0.0391 | - | - | - | - |
0.4726 | 26700 | 0.0389 | - | - | - | - |
0.4743 | 26800 | 0.0383 | - | - | - | - |
0.4761 | 26900 | 0.0389 | - | - | - | - |
0.4779 | 27000 | 0.0395 | - | - | - | - |
0.4797 | 27100 | 0.0388 | - | - | - | - |
0.4814 | 27200 | 0.0393 | - | - | - | - |
0.4832 | 27300 | 0.0392 | - | - | - | - |
0.4850 | 27400 | 0.0383 | - | - | - | - |
0.4867 | 27500 | 0.0383 | - | - | - | - |
0.4885 | 27600 | 0.0385 | - | - | - | - |
0.4903 | 27700 | 0.0386 | - | - | - | - |
0.4920 | 27800 | 0.0389 | - | - | - | - |
0.4938 | 27900 | 0.0393 | - | - | - | - |
0.4956 | 28000 | 0.0385 | - | - | - | - |
0.4974 | 28100 | 0.0391 | - | - | - | - |
0.4991 | 28200 | 0.0383 | - | - | - | - |
0.5009 | 28300 | 0.0391 | - | - | - | - |
0.5027 | 28400 | 0.0385 | - | - | - | - |
0.5044 | 28500 | 0.0378 | - | - | - | - |
0.5062 | 28600 | 0.0382 | - | - | - | - |
0.5080 | 28700 | 0.0387 | - | - | - | - |
0.5097 | 28800 | 0.0378 | - | - | - | - |
0.5115 | 28900 | 0.0383 | - | - | - | - |
0.5133 | 29000 | 0.038 | - | - | - | - |
0.5151 | 29100 | 0.0383 | - | - | - | - |
0.5168 | 29200 | 0.0382 | - | - | - | - |
0.5186 | 29300 | 0.0377 | - | - | - | - |
0.5204 | 29400 | 0.0376 | - | - | - | - |
0.5221 | 29500 | 0.0381 | - | - | - | - |
0.5239 | 29600 | 0.0378 | - | - | - | - |
0.5257 | 29700 | 0.0387 | - | - | - | - |
0.5274 | 29800 | 0.0378 | - | - | - | - |
0.5292 | 29900 | 0.0383 | - | - | - | - |
0.5310 | 30000 | 0.0383 | 0.0367 | 0.3935 | -4.6879 | 0.7613 |
0.5328 | 30100 | 0.0369 | - | - | - | - |
0.5345 | 30200 | 0.0378 | - | - | - | - |
0.5363 | 30300 | 0.0391 | - | - | - | - |
0.5381 | 30400 | 0.0382 | - | - | - | - |
0.5398 | 30500 | 0.0383 | - | - | - | - |
0.5416 | 30600 | 0.038 | - | - | - | - |
0.5434 | 30700 | 0.0375 | - | - | - | - |
0.5451 | 30800 | 0.0374 | - | - | - | - |
0.5469 | 30900 | 0.037 | - | - | - | - |
0.5487 | 31000 | 0.0378 | - | - | - | - |
0.5505 | 31100 | 0.0373 | - | - | - | - |
0.5522 | 31200 | 0.0381 | - | - | - | - |
0.5540 | 31300 | 0.038 | - | - | - | - |
0.5558 | 31400 | 0.0381 | - | - | - | - |
0.5575 | 31500 | 0.0375 | - | - | - | - |
0.5593 | 31600 | 0.037 | - | - | - | - |
0.5611 | 31700 | 0.037 | - | - | - | - |
0.5628 | 31800 | 0.0377 | - | - | - | - |
0.5646 | 31900 | 0.0377 | - | - | - | - |
0.5664 | 32000 | 0.0373 | - | - | - | - |
0.5682 | 32100 | 0.0368 | - | - | - | - |
0.5699 | 32200 | 0.0369 | - | - | - | - |
0.5717 | 32300 | 0.037 | - | - | - | - |
0.5735 | 32400 | 0.0382 | - | - | - | - |
0.5752 | 32500 | 0.0372 | - | - | - | - |
0.5770 | 32600 | 0.0372 | - | - | - | - |
0.5788 | 32700 | 0.0373 | - | - | - | - |
0.5805 | 32800 | 0.0371 | - | - | - | - |
0.5823 | 32900 | 0.0369 | - | - | - | - |
0.5841 | 33000 | 0.0371 | - | - | - | - |
0.5859 | 33100 | 0.0374 | - | - | - | - |
0.5876 | 33200 | 0.0376 | - | - | - | - |
0.5894 | 33300 | 0.0373 | - | - | - | - |
0.5912 | 33400 | 0.0375 | - | - | - | - |
0.5929 | 33500 | 0.0366 | - | - | - | - |
0.5947 | 33600 | 0.0368 | - | - | - | - |
0.5965 | 33700 | 0.0374 | - | - | - | - |
0.5982 | 33800 | 0.0366 | - | - | - | - |
0.6000 | 33900 | 0.0372 | - | - | - | - |
0.6018 | 34000 | 0.0379 | - | - | - | - |
0.6036 | 34100 | 0.0362 | - | - | - | - |
0.6053 | 34200 | 0.0365 | - | - | - | - |
0.6071 | 34300 | 0.0374 | - | - | - | - |
0.6089 | 34400 | 0.0369 | - | - | - | - |
0.6106 | 34500 | 0.0372 | - | - | - | - |
0.6124 | 34600 | 0.0366 | - | - | - | - |
0.6142 | 34700 | 0.0366 | - | - | - | - |
0.6159 | 34800 | 0.0368 | - | - | - | - |
0.6177 | 34900 | 0.0367 | - | - | - | - |
0.6195 | 35000 | 0.037 | 0.0356 | 0.4148 | -4.6403 | 0.7963 |
0.6212 | 35100 | 0.0365 | - | - | - | - |
0.6230 | 35200 | 0.0361 | - | - | - | - |
0.6248 | 35300 | 0.0367 | - | - | - | - |
0.6266 | 35400 | 0.0362 | - | - | - | - |
0.6283 | 35500 | 0.0365 | - | - | - | - |
0.6301 | 35600 | 0.0374 | - | - | - | - |
0.6319 | 35700 | 0.0369 | - | - | - | - |
0.6336 | 35800 | 0.0371 | - | - | - | - |
0.6354 | 35900 | 0.0367 | - | - | - | - |
0.6372 | 36000 | 0.0371 | - | - | - | - |
0.6389 | 36100 | 0.0371 | - | - | - | - |
0.6407 | 36200 | 0.0366 | - | - | - | - |
0.6425 | 36300 | 0.0358 | - | - | - | - |
0.6443 | 36400 | 0.0374 | - | - | - | - |
0.6460 | 36500 | 0.0368 | - | - | - | - |
0.6478 | 36600 | 0.037 | - | - | - | - |
0.6496 | 36700 | 0.0365 | - | - | - | - |
0.6513 | 36800 | 0.036 | - | - | - | - |
0.6531 | 36900 | 0.036 | - | - | - | - |
0.6549 | 37000 | 0.0365 | - | - | - | - |
0.6566 | 37100 | 0.0362 | - | - | - | - |
0.6584 | 37200 | 0.0371 | - | - | - | - |
0.6602 | 37300 | 0.0366 | - | - | - | - |
0.6620 | 37400 | 0.0366 | - | - | - | - |
0.6637 | 37500 | 0.0361 | - | - | - | - |
0.6655 | 37600 | 0.0357 | - | - | - | - |
0.6673 | 37700 | 0.0378 | - | - | - | - |
0.6690 | 37800 | 0.0363 | - | - | - | - |
0.6708 | 37900 | 0.0365 | - | - | - | - |
0.6726 | 38000 | 0.0363 | - | - | - | - |
0.6743 | 38100 | 0.0367 | - | - | - | - |
0.6761 | 38200 | 0.0359 | - | - | - | - |
0.6779 | 38300 | 0.0365 | - | - | - | - |
0.6797 | 38400 | 0.036 | - | - | - | - |
0.6814 | 38500 | 0.036 | - | - | - | - |
0.6832 | 38600 | 0.0362 | - | - | - | - |
0.6850 | 38700 | 0.036 | - | - | - | - |
0.6867 | 38800 | 0.0362 | - | - | - | - |
0.6885 | 38900 | 0.036 | - | - | - | - |
0.6903 | 39000 | 0.0367 | - | - | - | - |
0.6920 | 39100 | 0.0364 | - | - | - | - |
0.6938 | 39200 | 0.0365 | - | - | - | - |
0.6956 | 39300 | 0.0359 | - | - | - | - |
0.6974 | 39400 | 0.0363 | - | - | - | - |
0.6991 | 39500 | 0.0355 | - | - | - | - |
0.7009 | 39600 | 0.0358 | - | - | - | - |
0.7027 | 39700 | 0.0356 | - | - | - | - |
0.7044 | 39800 | 0.0363 | - | - | - | - |
0.7062 | 39900 | 0.0362 | - | - | - | - |
0.7080 | 40000 | 0.0358 | 0.0345 | 0.4029 | -4.5699 | 0.8057 |
0.7097 | 40100 | 0.0359 | - | - | - | - |
0.7115 | 40200 | 0.0363 | - | - | - | - |
0.7133 | 40300 | 0.0357 | - | - | - | - |
0.7151 | 40400 | 0.0356 | - | - | - | - |
0.7168 | 40500 | 0.0356 | - | - | - | - |
0.7186 | 40600 | 0.036 | - | - | - | - |
0.7204 | 40700 | 0.0353 | - | - | - | - |
0.7221 | 40800 | 0.0369 | - | - | - | - |
0.7239 | 40900 | 0.0356 | - | - | - | - |
0.7257 | 41000 | 0.0359 | - | - | - | - |
0.7274 | 41100 | 0.036 | - | - | - | - |
0.7292 | 41200 | 0.0362 | - | - | - | - |
0.7310 | 41300 | 0.0357 | - | - | - | - |
0.7328 | 41400 | 0.0357 | - | - | - | - |
0.7345 | 41500 | 0.0356 | - | - | - | - |
0.7363 | 41600 | 0.0357 | - | - | - | - |
0.7381 | 41700 | 0.0354 | - | - | - | - |
0.7398 | 41800 | 0.0356 | - | - | - | - |
0.7416 | 41900 | 0.035 | - | - | - | - |
0.7434 | 42000 | 0.0345 | - | - | - | - |
0.7451 | 42100 | 0.0355 | - | - | - | - |
0.7469 | 42200 | 0.0354 | - | - | - | - |
0.7487 | 42300 | 0.0353 | - | - | - | - |
0.7505 | 42400 | 0.035 | - | - | - | - |
0.7522 | 42500 | 0.0358 | - | - | - | - |
0.7540 | 42600 | 0.0356 | - | - | - | - |
0.7558 | 42700 | 0.0353 | - | - | - | - |
0.7575 | 42800 | 0.0352 | - | - | - | - |
0.7593 | 42900 | 0.0349 | - | - | - | - |
0.7611 | 43000 | 0.0347 | - | - | - | - |
0.7628 | 43100 | 0.0355 | - | - | - | - |
0.7646 | 43200 | 0.0351 | - | - | - | - |
0.7664 | 43300 | 0.0358 | - | - | - | - |
0.7682 | 43400 | 0.0348 | - | - | - | - |
0.7699 | 43500 | 0.0348 | - | - | - | - |
0.7717 | 43600 | 0.0347 | - | - | - | - |
0.7735 | 43700 | 0.0353 | - | - | - | - |
0.7752 | 43800 | 0.0354 | - | - | - | - |
0.7770 | 43900 | 0.0349 | - | - | - | - |
0.7788 | 44000 | 0.0356 | - | - | - | - |
0.7805 | 44100 | 0.0353 | - | - | - | - |
0.7823 | 44200 | 0.0346 | - | - | - | - |
0.7841 | 44300 | 0.0347 | - | - | - | - |
0.7859 | 44400 | 0.0344 | - | - | - | - |
0.7876 | 44500 | 0.0354 | - | - | - | - |
0.7894 | 44600 | 0.0347 | - | - | - | - |
0.7912 | 44700 | 0.0344 | - | - | - | - |
0.7929 | 44800 | 0.0345 | - | - | - | - |
0.7947 | 44900 | 0.035 | - | - | - | - |
0.7965 | 45000 | 0.0343 | 0.0337 | 0.4095 | -4.5223 | 0.8104 |
0.7982 | 45100 | 0.0347 | - | - | - | - |
0.8000 | 45200 | 0.0344 | - | - | - | - |
0.8018 | 45300 | 0.0347 | - | - | - | - |
0.8036 | 45400 | 0.034 | - | - | - | - |
0.8053 | 45500 | 0.0341 | - | - | - | - |
0.8071 | 45600 | 0.0352 | - | - | - | - |
0.8089 | 45700 | 0.0345 | - | - | - | - |
0.8106 | 45800 | 0.0341 | - | - | - | - |
0.8124 | 45900 | 0.0351 | - | - | - | - |
0.8142 | 46000 | 0.0346 | - | - | - | - |
0.8159 | 46100 | 0.0345 | - | - | - | - |
0.8177 | 46200 | 0.0354 | - | - | - | - |
0.8195 | 46300 | 0.0342 | - | - | - | - |
0.8213 | 46400 | 0.0343 | - | - | - | - |
0.8230 | 46500 | 0.0346 | - | - | - | - |
0.8248 | 46600 | 0.0342 | - | - | - | - |
0.8266 | 46700 | 0.0344 | - | - | - | - |
0.8283 | 46800 | 0.0343 | - | - | - | - |
0.8301 | 46900 | 0.0354 | - | - | - | - |
0.8319 | 47000 | 0.035 | - | - | - | - |
0.8336 | 47100 | 0.0345 | - | - | - | - |
0.8354 | 47200 | 0.0347 | - | - | - | - |
0.8372 | 47300 | 0.0336 | - | - | - | - |
0.8390 | 47400 | 0.0345 | - | - | - | - |
0.8407 | 47500 | 0.0344 | - | - | - | - |
0.8425 | 47600 | 0.0345 | - | - | - | - |
0.8443 | 47700 | 0.0345 | - | - | - | - |
0.8460 | 47800 | 0.0348 | - | - | - | - |
0.8478 | 47900 | 0.0347 | - | - | - | - |
0.8496 | 48000 | 0.0343 | - | - | - | - |
0.8513 | 48100 | 0.0347 | - | - | - | - |
0.8531 | 48200 | 0.0351 | - | - | - | - |
0.8549 | 48300 | 0.0339 | - | - | - | - |
0.8567 | 48400 | 0.0344 | - | - | - | - |
0.8584 | 48500 | 0.0348 | - | - | - | - |
0.8602 | 48600 | 0.0345 | - | - | - | - |
0.8620 | 48700 | 0.0343 | - | - | - | - |
0.8637 | 48800 | 0.0343 | - | - | - | - |
0.8655 | 48900 | 0.0343 | - | - | - | - |
0.8673 | 49000 | 0.0344 | - | - | - | - |
0.8690 | 49100 | 0.0342 | - | - | - | - |
0.8708 | 49200 | 0.0344 | - | - | - | - |
0.8726 | 49300 | 0.034 | - | - | - | - |
0.8744 | 49400 | 0.0343 | - | - | - | - |
0.8761 | 49500 | 0.0346 | - | - | - | - |
0.8779 | 49600 | 0.0345 | - | - | - | - |
0.8797 | 49700 | 0.0337 | - | - | - | - |
0.8814 | 49800 | 0.0339 | - | - | - | - |
0.8832 | 49900 | 0.0341 | - | - | - | - |
0.8850 | 50000 | 0.0343 | 0.0328 | 0.4145 | -4.4765 | 0.8153 |
0.8867 | 50100 | 0.0341 | - | - | - | - |
0.8885 | 50200 | 0.0344 | - | - | - | - |
0.8903 | 50300 | 0.0342 | - | - | - | - |
0.8921 | 50400 | 0.0344 | - | - | - | - |
0.8938 | 50500 | 0.0336 | - | - | - | - |
0.8956 | 50600 | 0.034 | - | - | - | - |
0.8974 | 50700 | 0.0346 | - | - | - | - |
0.8991 | 50800 | 0.0349 | - | - | - | - |
0.9009 | 50900 | 0.0343 | - | - | - | - |
0.9027 | 51000 | 0.0345 | - | - | - | - |
0.9044 | 51100 | 0.0339 | - | - | - | - |
0.9062 | 51200 | 0.0344 | - | - | - | - |
0.9080 | 51300 | 0.0337 | - | - | - | - |
0.9098 | 51400 | 0.034 | - | - | - | - |
0.9115 | 51500 | 0.0341 | - | - | - | - |
0.9133 | 51600 | 0.0342 | - | - | - | - |
0.9151 | 51700 | 0.0339 | - | - | - | - |
0.9168 | 51800 | 0.0336 | - | - | - | - |
0.9186 | 51900 | 0.0342 | - | - | - | - |
0.9204 | 52000 | 0.0354 | - | - | - | - |
0.9221 | 52100 | 0.0337 | - | - | - | - |
0.9239 | 52200 | 0.0338 | - | - | - | - |
0.9257 | 52300 | 0.0344 | - | - | - | - |
0.9275 | 52400 | 0.0338 | - | - | - | - |
0.9292 | 52500 | 0.0337 | - | - | - | - |
0.9310 | 52600 | 0.0335 | - | - | - | - |
0.9328 | 52700 | 0.0329 | - | - | - | - |
0.9345 | 52800 | 0.0335 | - | - | - | - |
0.9363 | 52900 | 0.0341 | - | - | - | - |
0.9381 | 53000 | 0.0338 | - | - | - | - |
0.9398 | 53100 | 0.0336 | - | - | - | - |
0.9416 | 53200 | 0.0337 | - | - | - | - |
0.9434 | 53300 | 0.0339 | - | - | - | - |
0.9451 | 53400 | 0.0333 | - | - | - | - |
0.9469 | 53500 | 0.0336 | - | - | - | - |
0.9487 | 53600 | 0.034 | - | - | - | - |
0.9505 | 53700 | 0.0334 | - | - | - | - |
0.9522 | 53800 | 0.0338 | - | - | - | - |
0.9540 | 53900 | 0.0324 | - | - | - | - |
0.9558 | 54000 | 0.0333 | - | - | - | - |
0.9575 | 54100 | 0.0331 | - | - | - | - |
0.9593 | 54200 | 0.0331 | - | - | - | - |
0.9611 | 54300 | 0.0332 | - | - | - | - |
0.9628 | 54400 | 0.0339 | - | - | - | - |
0.9646 | 54500 | 0.0337 | - | - | - | - |
0.9664 | 54600 | 0.0338 | - | - | - | - |
0.9682 | 54700 | 0.0335 | - | - | - | - |
0.9699 | 54800 | 0.0337 | - | - | - | - |
0.9717 | 54900 | 0.0336 | - | - | - | - |
0.9735 | 55000 | 0.0337 | 0.0323 | 0.4196 | -4.4734 | 0.8236 |
0.9752 | 55100 | 0.0338 | - | - | - | - |
0.9770 | 55200 | 0.0343 | - | - | - | - |
0.9788 | 55300 | 0.0334 | - | - | - | - |
0.9805 | 55400 | 0.0336 | - | - | - | - |
0.9823 | 55500 | 0.0329 | - | - | - | - |
0.9841 | 55600 | 0.0338 | - | - | - | - |
0.9859 | 55700 | 0.0326 | - | - | - | - |
0.9876 | 55800 | 0.0328 | - | - | - | - |
0.9894 | 55900 | 0.0335 | - | - | - | - |
0.9912 | 56000 | 0.0333 | - | - | - | - |
0.9929 | 56100 | 0.0335 | - | - | - | - |
0.9947 | 56200 | 0.0332 | - | - | - | - |
0.9965 | 56300 | 0.0335 | - | - | - | - |
0.9982 | 56400 | 0.0337 | - | - | - | - |
1.0000 | 56500 | 0.0328 | - | - | - | - |
1.0018 | 56600 | 0.0336 | - | - | - | - |
1.0036 | 56700 | 0.0331 | - | - | - | - |
1.0053 | 56800 | 0.0333 | - | - | - | - |
1.0071 | 56900 | 0.0331 | - | - | - | - |
1.0089 | 57000 | 0.0332 | - | - | - | - |
1.0106 | 57100 | 0.0319 | - | - | - | - |
1.0124 | 57200 | 0.0331 | - | - | - | - |
1.0142 | 57300 | 0.0335 | - | - | - | - |
1.0159 | 57400 | 0.0329 | - | - | - | - |
1.0177 | 57500 | 0.0328 | - | - | - | - |
1.0195 | 57600 | 0.0329 | - | - | - | - |
1.0213 | 57700 | 0.033 | - | - | - | - |
1.0230 | 57800 | 0.0328 | - | - | - | - |
1.0248 | 57900 | 0.0335 | - | - | - | - |
1.0266 | 58000 | 0.033 | - | - | - | - |
1.0283 | 58100 | 0.033 | - | - | - | - |
1.0301 | 58200 | 0.0328 | - | - | - | - |
1.0319 | 58300 | 0.0327 | - | - | - | - |
1.0336 | 58400 | 0.0327 | - | - | - | - |
1.0354 | 58500 | 0.0334 | - | - | - | - |
1.0372 | 58600 | 0.0332 | - | - | - | - |
1.0390 | 58700 | 0.0333 | - | - | - | - |
1.0407 | 58800 | 0.0328 | - | - | - | - |
1.0425 | 58900 | 0.033 | - | - | - | - |
1.0443 | 59000 | 0.0331 | - | - | - | - |
1.0460 | 59100 | 0.0331 | - | - | - | - |
1.0478 | 59200 | 0.0321 | - | - | - | - |
1.0496 | 59300 | 0.0329 | - | - | - | - |
1.0513 | 59400 | 0.0323 | - | - | - | - |
1.0531 | 59500 | 0.0326 | - | - | - | - |
1.0549 | 59600 | 0.033 | - | - | - | - |
1.0567 | 59700 | 0.0333 | - | - | - | - |
1.0584 | 59800 | 0.0321 | - | - | - | - |
1.0602 | 59900 | 0.0326 | - | - | - | - |
1.0620 | 60000 | 0.0326 | 0.0315 | 0.4151 | -4.4110 | 0.8311 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for PetchP/m3-clip-ViT-B-16
Base model
BAAI/bge-m3Evaluation results
- Negative Mse on en thself-reported-4.411
- Src2Trg Accuracy on en thself-reported0.428
- Trg2Src Accuracy on en thself-reported0.403
- Mean Accuracy on en thself-reported0.415
- Pearson Cosine on sts17 en en testself-reported0.755
- Spearman Cosine on sts17 en en testself-reported0.796
- Pearson Manhattan on sts17 en en testself-reported0.829
- Spearman Manhattan on sts17 en en testself-reported0.831
- Pearson Euclidean on sts17 en en testself-reported0.815
- Spearman Euclidean on sts17 en en testself-reported0.818