Edit model card

mrpc_lemmatized_new

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4643
  • Accuracy: 0.8058

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5449 1.0 255 0.4622 0.7925
0.3556 2.0 510 0.4824 0.7890
0.2135 3.0 765 0.6725 0.7826
0.1251 4.0 1020 0.9652 0.7994
0.0845 5.0 1275 0.9354 0.8023
0.0431 6.0 1530 1.0782 0.7959
0.0287 7.0 1785 1.2790 0.8052
0.0186 8.0 2040 1.1717 0.8075
0.0186 9.0 2295 1.2979 0.8104
0.0079 10.0 2550 1.4014 0.8070
0.0071 11.0 2805 1.4469 0.8029
0.0072 12.0 3060 1.4551 0.8064
0.0043 13.0 3315 1.4443 0.8081
0.0041 14.0 3570 1.4639 0.8093
0.0015 15.0 3825 1.4643 0.8058

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.2
Downloads last month
0
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for PawanJain409/mrpc_lemmatized_new

Finetuned
(2106)
this model