Edit model card

results

This model is a fine-tuned version of hfl/chinese-roberta-wwm-ext-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0540
  • Precision: 0.9528
  • Recall: 0.9561
  • F1: 0.9545
  • Accuracy: 0.9941

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0237 1.0 725 0.0217 0.9247 0.9355 0.9301 0.9934
0.0157 2.0 1450 0.0239 0.9358 0.9482 0.9420 0.9934
0.0074 3.0 2175 0.0264 0.9465 0.9507 0.9486 0.9936
0.0032 4.0 2900 0.0288 0.9390 0.9478 0.9434 0.9934
0.0022 5.0 3625 0.0335 0.9409 0.9440 0.9425 0.9932
0.0051 6.0 4350 0.0328 0.9500 0.9513 0.9507 0.9938
0.002 7.0 5075 0.0372 0.9436 0.9471 0.9453 0.9929
0.0007 8.0 5800 0.0447 0.9394 0.9486 0.9440 0.9925
0.0011 9.0 6525 0.0403 0.9488 0.9530 0.9509 0.9936
0.0009 10.0 7250 0.0425 0.9477 0.9596 0.9536 0.9938
0.001 11.0 7975 0.0420 0.9438 0.9436 0.9437 0.9927
0.0005 12.0 8700 0.0495 0.9414 0.9525 0.9469 0.9920
0.0007 13.0 9425 0.0424 0.9485 0.9602 0.9543 0.9938
0.0004 14.0 10150 0.0399 0.9422 0.9536 0.9479 0.9937
0.0002 15.0 10875 0.0360 0.9469 0.9511 0.9490 0.9942
0.0003 16.0 11600 0.0395 0.9468 0.9521 0.9494 0.9936
0.0004 17.0 12325 0.0420 0.9495 0.9544 0.9519 0.9943
0.0011 18.0 13050 0.0400 0.9462 0.9515 0.9489 0.9939
0.0006 19.0 13775 0.0410 0.9473 0.9554 0.9513 0.9940
0.0001 20.0 14500 0.0492 0.9416 0.9525 0.9470 0.9933
0.0002 21.0 15225 0.0426 0.9501 0.9555 0.9528 0.9941
0.0006 22.0 15950 0.0450 0.9459 0.9430 0.9445 0.9934
0.0001 23.0 16675 0.0584 0.9415 0.9450 0.9432 0.9931
0.0 24.0 17400 0.0465 0.9497 0.9557 0.9527 0.9939
0.0 25.0 18125 0.0513 0.9534 0.9569 0.9551 0.9940
0.0001 26.0 18850 0.0500 0.9442 0.9579 0.9510 0.9933
0.0 27.0 19575 0.0468 0.9506 0.9592 0.9549 0.9939
0.0007 28.0 20300 0.0441 0.9513 0.9509 0.9511 0.9936
0.0 29.0 21025 0.0493 0.9494 0.9525 0.9509 0.9938
0.0004 30.0 21750 0.0490 0.9502 0.9548 0.9525 0.9937
0.0 31.0 22475 0.0516 0.9475 0.9509 0.9492 0.9937
0.0 32.0 23200 0.0552 0.9440 0.9530 0.9485 0.9933
0.0 33.0 23925 0.0548 0.9422 0.9534 0.9478 0.9932
0.0002 34.0 24650 0.0523 0.9476 0.9536 0.9506 0.9936
0.0 35.0 25375 0.0461 0.9534 0.9565 0.9549 0.9941
0.0 36.0 26100 0.0482 0.9459 0.9548 0.9503 0.9939
0.0001 37.0 26825 0.0520 0.9522 0.9552 0.9537 0.9939
0.0 38.0 27550 0.0532 0.9525 0.9542 0.9534 0.9937
0.0 39.0 28275 0.0515 0.9502 0.9542 0.9522 0.9939
0.0 40.0 29000 0.0518 0.9540 0.9550 0.9545 0.9941
0.0 41.0 29725 0.0529 0.9529 0.9546 0.9538 0.9939
0.0001 42.0 30450 0.0531 0.9534 0.9565 0.9549 0.9940
0.0 43.0 31175 0.0542 0.9535 0.9557 0.9546 0.9941
0.0 44.0 31900 0.0538 0.9507 0.9548 0.9528 0.9940
0.0 45.0 32625 0.0568 0.9482 0.9538 0.9510 0.9938
0.0001 46.0 33350 0.0548 0.9546 0.9544 0.9545 0.9941
0.0 47.0 34075 0.0545 0.9515 0.9561 0.9538 0.9941
0.0 48.0 34800 0.0538 0.9519 0.9563 0.9541 0.9942
0.0 49.0 35525 0.0540 0.9525 0.9561 0.9543 0.9941
0.0 50.0 36250 0.0540 0.9528 0.9561 0.9545 0.9941

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.3.0+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
6
Safetensors
Model size
324M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for PassbyGrocer/results

Finetuned
(7)
this model