bert-finetuned-ner-1

Este es modelo resultado de un finetuning de google-bert/bert-base-cased sobre el conll2002 dataset. Los siguientes son los resultados sobre el conjunto de evaluación:

  • Training Loss: 0.000900
  • Validation Loss: 0.306902
  • Precision: 0.805356
  • Recall: 0.822381
  • F1: 0.813779
  • Accuracy: 0.969573

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • num_epochs: 8
  • weight_decay: 0.001

Training results

Epoch Training Loss Validation Loss Precision Recall F1 Accuracy
1.0 0.0045 0.263534 0.787187 0.815947 0.801309 0.968117
2.0 0.0054 0.261010 0.776933 0.798713 0.787673 0.966914
3.0 0.0031 0.288264 0.787994 0.811351 0.799502 0.967351
4.0 0.0030 0.261651 0.799186 0.812040 0.805562 0.969476
5.0 0.0023 0.281675 0.792880 0.813649 0.803130 0.968544
6.0 0.0014 0.285965 0.790842 0.817555 0.803977 0.969311
7.0 0.0009 0.320790 0.795583 0.811121 0.803277 0.968049
8.0 0.0009 0.306902 0.805356 0.822381 0.813779 0.969573
Downloads last month
5
Safetensors
Model size
108M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for PLN-T4-J-D-W/bert-finetuned-ner-1

Finetuned
(2257)
this model

Dataset used to train PLN-T4-J-D-W/bert-finetuned-ner-1

Evaluation results