File size: 24,656 Bytes
9a39d12 86fa89e ce69c4e 9a39d12 59cbc1d 450aed5 59cbc1d 86fa89e 5b53772 9283f81 62d21d2 ca1856d 091bb50 9089edf 717d6d8 043b98d 717d6d8 9089edf 091bb50 9089edf 091bb50 9089edf 717d6d8 86fa89e 717d6d8 86fa89e 717d6d8 86fa89e 717d6d8 86fa89e ce69c4e 655f38e ce69c4e 717d6d8 ce69c4e 717d6d8 9089edf 043b98d 62d21d2 33f58e3 86fa89e 9089edf 717d6d8 33f58e3 717d6d8 ce69c4e 717d6d8 ce69c4e 9089edf ce69c4e 9089edf ce69c4e 9089edf ce69c4e 9089edf 043b98d 9089edf 86fa89e 59cbc1d 33f58e3 59cbc1d 86fa89e 594f7d1 86fa89e 59cbc1d 86fa89e 594f7d1 86fa89e 594f7d1 86fa89e 594f7d1 86fa89e 966cdab 86fa89e 59cbc1d 86fa89e 59cbc1d ece5278 59cbc1d 594f7d1 acbf352 86fa89e 59cbc1d 86fa89e 59cbc1d 966cdab 86fa89e 59cbc1d 86fa89e 59cbc1d 86fa89e 594f7d1 86fa89e 8ac6dc0 966cdab 86fa89e 8ac6dc0 86fa89e 4fc560d 86fa89e 8ac6dc0 86fa89e 594f7d1 86fa89e 966cdab 86fa89e 594f7d1 86fa89e 966cdab 86fa89e 594f7d1 86fa89e 966cdab 86fa89e 594f7d1 86fa89e 966cdab 86fa89e 59cbc1d 932b6de 59cbc1d 8314959 59cbc1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
---
license: mit
pipeline_tag: image-text-to-text
library_name: transformers
base_model:
- OpenGVLab/InternViT-6B-448px-V1-2
- NousResearch/Nous-Hermes-2-Yi-34B
base_model_relation: merge
language:
- multilingual
tags:
- internvl
- vision
- ocr
- multi-image
- video
- custom_code
---
# InternVL-Chat-V1-2
[\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL) [\[🆕 Blog\]](https://internvl.github.io/blog/) [\[📜 InternVL 1.0 Paper\]](https://arxiv.org/abs/2312.14238) [\[📜 InternVL 1.5 Report\]](https://arxiv.org/abs/2404.16821)
[\[🗨️ Chat Demo\]](https://internvl.opengvlab.com/) [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[🚀 Quick Start\]](#quick-start) [\[📖 中文解读\]](https://zhuanlan.zhihu.com/p/706547971) [\[📖 Documents\]](https://internvl.readthedocs.io/en/latest/)
## Introduction
We are excited to introduce [🤗 InternVL-Chat-V1-2](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2). Inspired by [LLaVA-NeXT-34B](https://llava-vl.github.io/blog/2024-01-30-llava-next/), we have also adopted [Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B) as the language model. Below is the pipeline.
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/GIEKCvNc1Y5iMQqLv645p.png" style="width: 100%;">
</p>
From the experimental results, we've observed that **a stronger language model (34B) can better leverage the powerful capabilities of our vision foundation model.**
For better training reproducibility, we follow the minimalist design and data efficiency similar to LLaVA-NeXT. To reduce training costs, we provide a [pre-trained MLP projector](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2/blob/main/mlp_projector/hermes_2_yi_34b.pth) and only employ around 1.2 million visual instruction tuning samples for SFT. Our model has a total of 40 billion parameters and can be trained within 1.5 days using 32 A100 GPUs. The code, data, and model have been made publicly available.
## Model Details
- **Model Type:** multimodal large language model (MLLM)
- **Model Stats:**
- Architecture: [InternViT-6B-448px-V1-2](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2) + MLP + [Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B)
- Image size: 448 x 448 (256 tokens)
- Params: 40B
- **Training Strategy:**
- Pre-training Stage
- Learnable Component: ViT + MLP
- Data: Trained on 8192x4800=39.3M samples, including COYO, LAION, CC12M, CC3M, SBU, Wukong, GRIT, Objects365, OpenImages, and OCR data.
- Note: In this stage, we first load the pre-trained weights of [InternViT-6B-448px-V1-0](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-0) and connect it to Nous-Hermes-2-Yi-34B. After pre-training, the extracted ViT is published as [InternViT-6B-448px-V1-2](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2). Moreover, in order to reduce the number of visual tokens, we use a pixel shuffle to reduce 1024 tokens to 256 tokens.
- Supervised Fine-tuning Stage
- Learnable Component: ViT + MLP + LLM
- Data: A simplified, fully open-source dataset, containing approximately 1.2 million samples. You can download it from [here](https://huggingface.co/datasets/OpenGVLab/InternVL-Chat-V1-2-SFT-Data).
## Performance
\* Proprietary Model
| name | image size | MMMU<br>(val) | MMMU<br>(test) | MathVista<br>(testmini) | MMB<br>(test) | MMB−CN<br>(test) | MMVP | MME | ScienceQA<br>(image) | POPE | TextVQA<br>(val) | SEEDv1<br>(image) | VizWiz<br>(test) | GQA<br>(test) |
| ---------------------- | ---------- | ------------- | -------------- | ----------------------- | ------------- | ---------------- | ---- | -------- | -------------------- | ---- | ---------------- | ----------------- | ---------------- | ------------- |
| GPT−4V\* | unknown | 56.8 | 55.7 | 49.9 | 77.0 | 74.4 | 38.7 | 1409/517 | - | - | 78.0 | 71.6 | - | - |
| Gemini Ultra\* | unknown | 59.4 | - | 53.0 | - | - | - | - | - | - | 82.3 | - | - | - |
| Gemini Pro\* | unknown | 47.9 | - | 45.2 | 73.6 | 74.3 | 40.7 | 1497/437 | - | - | 74.6 | 70.7 | - | - |
| Qwen−VL−Plus\* | unknown | 45.2 | 40.8 | 43.3 | 67.0 | 70.7 | - | 1681/502 | - | - | 78.9 | 65.7 | - | - |
| Qwen−VL−Max\* | unknown | 51.4 | 46.8 | 51.0 | 77.6 | 75.7 | - | - | - | - | 79.5 | - | - | - |
| | | | | | | | | | | | | | | |
| LLaVA−NEXT−34B | 672x672 | 51.1 | 44.7 | 46.5 | 79.3 | 79.0 | - | 1631/397 | 81.8 | 87.7 | 69.5 | 75.9 | 63.8 | 67.1 |
| InternVL−Chat<br>−V1-2 | 448x448 | 51.6 | 46.2 | 47.7 | 82.2 | 81.2 | 56.7 | 1687/489 | 83.3 | 88.0 | 72.5 | 75.6 | 60.0 | 64.0 |
- In most benchmarks, InternVL-Chat-V1-2 achieves better performance than LLaVA-NeXT-34B.
Here, we have conducted only a simple performance comparison. For more detailed performance information and additional evaluation metrics, please refer to our performance summary table.
## Training Details
### Data Preparation
Inspired by LLaVA-NeXT, we adopted a data-efficient SFT strategy to train InternVL-Chat-V1-2, utilizing approximately 1.2M of visual instruction tuning samples in total, all of which are fully open-source. In a macro sense, we build upon [ShareGPT-4V](https://github.com/InternLM/InternLM-XComposer/blob/main/projects/ShareGPT4V/docs/Data.md#prepare-images) and additionally integrate [LLaVA-ZH](https://huggingface.co/datasets/openbmb/llava_zh), [DVQA](https://github.com/kushalkafle/DVQA_dataset), [ChartQA](https://github.com/vis-nlp/ChartQA), [AI2D](https://allenai.org/data/diagrams), [DocVQA](https://www.docvqa.org/datasets), [GeoQA+](https://github.com/SCNU203/GeoQA-Plus), and [SynthDoG-EN](https://huggingface.co/datasets/naver-clova-ix/synthdog-en). Most of the data remains consistent with LLaVA-NeXT.
Now, you can download these datasets directly from [HuggingFace](https://huggingface.co/datasets/OpenGVLab/InternVL-Chat-V1-2-SFT-Data). For more details about data preparation, please see [here](https://github.com/OpenGVLab/InternVL/tree/main/internvl_chat#prepare-training-datasets).
### Training (Supervised Fine-tuning)
We provide [slurm scripts](https://github.com/OpenGVLab/InternVL/blob/main/internvl_chat/shell/internvl1.2/hermes2_yi34b/internvl_chat_v1_2_hermes2_yi34b_448_res_finetune.sh) for multi-node multi-GPU training. You can use either 32 or 64 GPUs to train this model. If you use 64 GPUs, training will take approximately 18 hours.
For more details about training, please see [here](https://internvl.readthedocs.io/en/latest/internvl1.2/reproduce.html).
The hyperparameters used for fine-tuning are listed in the following table.
| Hyperparameter | Trainable Param | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
| ---------------------- | ---------------- | ----------------- | ------------- | ------ | ---------- | ------------ |
| InternVL−Chat<br>−V1-2 | 40B (full model) | 512 | 1e-5 | 1 | 2048 | 0.05 |
## Quick Start
We provide an example code to run InternVL-Chat-V1-2 using `transformers`.
We also welcome you to experience the InternVL2 series models in our [online demo](https://internvl.opengvlab.com/).
> Please use transformers==4.37.2 to ensure the model works normally.
### Model Loading
#### 16-bit (bf16 / fp16)
```python
import torch
from transformers import AutoTokenizer, AutoModel
path = "OpenGVLab/InternVL-Chat-V1-2"
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True).eval().cuda()
```
#### BNB 8-bit Quantization
```python
import torch
from transformers import AutoTokenizer, AutoModel
path = "OpenGVLab/InternVL-Chat-V1-2"
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
load_in_8bit=True,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True).eval()
```
#### BNB 4-bit Quantization
> **⚠️ Warning:** Due to significant quantization errors with BNB 4-bit quantization on InternViT-6B, the model may produce nonsensical outputs and fail to understand images. Therefore, please avoid using BNB 4-bit quantization.
#### Multiple GPUs
The reason for writing the code this way is to avoid errors that occur during multi-GPU inference due to tensors not being on the same device. By ensuring that the first and last layers of the large language model (LLM) are on the same device, we prevent such errors.
```python
import math
import torch
from transformers import AutoTokenizer, AutoModel
def split_model(model_name):
device_map = {}
world_size = torch.cuda.device_count()
num_layers = {'InternVL-Chat-V1-2': 60, 'InternVL-Chat-V1-2-Plus': 60}[model_name]
# Since the first GPU will be used for ViT, treat it as half a GPU.
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
num_layers_per_gpu = [num_layers_per_gpu] * world_size
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
layer_cnt = 0
for i, num_layer in enumerate(num_layers_per_gpu):
for j in range(num_layer):
device_map[f'language_model.model.layers.{layer_cnt}'] = i
layer_cnt += 1
device_map['vision_model'] = 0
device_map['mlp1'] = 0
device_map['language_model.model.tok_embeddings'] = 0
device_map['language_model.model.embed_tokens'] = 0
device_map['language_model.output'] = 0
device_map['language_model.model.norm'] = 0
device_map['language_model.lm_head'] = 0
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
return device_map
path = "OpenGVLab/InternVL-Chat-V1-2"
device_map = split_model('InternVL-Chat-V1-2')
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True,
device_map=device_map).eval()
```
### Inference with Transformers
#### Pure-text conversation
```python
from transformers import AutoTokenizer, AutoModel
import torch
path = "OpenGVLab/InternVL-Chat-V1-2"
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
generation_config = dict(max_new_tokens=1024, do_sample=True)
question = 'Hello, who are you?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')
question = 'Can you tell me a story?'
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')
```
#### Single-image single-round conversation
```python
from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
from PIL import Image
import torch
path = "OpenGVLab/InternVL-Chat-V1-2"
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
image_processor = CLIPImageProcessor.from_pretrained(path)
image = Image.open('./examples/image2.jpg').resize((448, 448))
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens=1024, do_sample=True)
question = '<image>\nPlease describe the image shortly.'
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(f'User: {question}')
print(f'Assistant: {response}')
```
#### Single-image multi-round conversation
```python
from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
from PIL import Image
import torch
path = "OpenGVLab/InternVL-Chat-V1-2"
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
image_processor = CLIPImageProcessor.from_pretrained(path)
image = Image.open('./examples/image2.jpg').resize((448, 448))
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens=1024, do_sample=True)
question = '<image>\nPlease describe the image in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')
question = 'Please write a poem according to the image.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')
```
#### Multi-image multi-round conversation, combined images
> **⚠️️ Warning:** Please note that for this model, we support multi-image chat in the interface, but the results are not very good due to the lack of training with multi-image data.
```python
from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
from PIL import Image
import torch
path = "OpenGVLab/InternVL-Chat-V1-2"
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
image_processor = CLIPImageProcessor.from_pretrained(path)
image1 = Image.open('./examples/image1.jpg').resize((448, 448))
pixel_values1 = image_processor(images=image1, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
image2 = Image.open('./examples/image2.jpg').resize((448, 448))
pixel_values2 = image_processor(images=image2, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
generation_config = dict(max_new_tokens=1024, do_sample=True)
question = '<image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
history=None, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')
question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
history=history, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')
```
#### Multi-image multi-round conversation, separate images
> **⚠️️ Warning:** Please note that for this model, we support multi-image chat in the interface, but the results are not very good due to the lack of training with multi-image data.
```python
from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
from PIL import Image
import torch
path = "OpenGVLab/InternVL-Chat-V1-2"
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
image_processor = CLIPImageProcessor.from_pretrained(path)
image1 = Image.open('./examples/image1.jpg').resize((448, 448))
pixel_values1 = image_processor(images=image1, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
image2 = Image.open('./examples/image2.jpg').resize((448, 448))
pixel_values2 = image_processor(images=image2, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
generation_config = dict(max_new_tokens=1024, do_sample=True)
question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
num_patches_list=num_patches_list, history=None, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')
question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
num_patches_list=num_patches_list, history=history, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')
```
#### Batch inference, single image per sample
```python
from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
from PIL import Image
import torch
path = "OpenGVLab/InternVL-Chat-V1-2"
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
image_processor = CLIPImageProcessor.from_pretrained(path)
image1 = Image.open('./examples/image1.jpg').resize((448, 448))
pixel_values1 = image_processor(images=image1, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
image2 = Image.open('./examples/image2.jpg').resize((448, 448))
pixel_values2 = image_processor(images=image2, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
generation_config = dict(max_new_tokens=1024, do_sample=True)
questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
responses = model.batch_chat(tokenizer, pixel_values,
num_patches_list=num_patches_list,
questions=questions,
generation_config=generation_config)
for question, response in zip(questions, responses):
print(f'User: {question}')
print(f'Assistant: {response}')
```
#### Video multi-round conversation
> **⚠️️ Warning:** Please note that for this model, we support video chat in the interface, but the results are not very good due to the lack of training with video data.
```python
from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
from decord import VideoReader, cpu
from PIL import Image
import numpy as np
import torch
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
if bound:
start, end = bound[0], bound[1]
else:
start, end = -100000, 100000
start_idx = max(first_idx, round(start * fps))
end_idx = min(round(end * fps), max_frame)
seg_size = float(end_idx - start_idx) / num_segments
frame_indices = np.array([
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
for idx in range(num_segments)
])
return frame_indices
def load_video(video_path, bound=None, num_segments=32):
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
max_frame = len(vr) - 1
fps = float(vr.get_avg_fps())
pixel_values_list, num_patches_list = [], []
image_processor = CLIPImageProcessor.from_pretrained(path)
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB').resize((448, 448))
pixel_values = image_processor(images=img, return_tensors='pt').pixel_values
num_patches_list.append(pixel_values.shape[0])
pixel_values_list.append(pixel_values)
pixel_values = torch.cat(pixel_values_list)
return pixel_values, num_patches_list
path = "OpenGVLab/InternVL-Chat-V1-2"
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
generation_config = dict(max_new_tokens=1024, do_sample=True)
video_path = './examples/red-panda.mp4'
pixel_values, num_patches_list = load_video(video_path, num_segments=8)
pixel_values = pixel_values.to(torch.bfloat16).cuda()
video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
question = video_prefix + 'What is the red panda doing?'
# Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
num_patches_list=num_patches_list, history=None, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')
question = 'Describe this video in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
num_patches_list=num_patches_list, history=history, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')
```
#### Streaming output
Besides this method, you can also use the following code to get streamed output.
```python
from transformers import TextIteratorStreamer
from threading import Thread
# Initialize the streamer
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
# Define the generation configuration
generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer)
# Start the model chat in a separate thread
thread = Thread(target=model.chat, kwargs=dict(
tokenizer=tokenizer, pixel_values=pixel_values, question=question,
history=None, return_history=False, generation_config=generation_config,
))
thread.start()
# Initialize an empty string to store the generated text
generated_text = ''
# Loop through the streamer to get the new text as it is generated
for new_text in streamer:
if new_text == model.conv_template.sep:
break
generated_text += new_text
print(new_text, end='', flush=True) # Print each new chunk of generated text on the same line
```
## License
This project is released under the MIT license. Parts of this project contain code and models (e.g., LLaMA2) from other sources, which are subject to their respective licenses.
## Citation
If you find this project useful in your research, please consider citing:
```BibTeX
@article{chen2023internvl,
title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
journal={arXiv preprint arXiv:2312.14238},
year={2023}
}
@article{chen2024far,
title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
journal={arXiv preprint arXiv:2404.16821},
year={2024}
}
```
|