czczup commited on
Commit
86fa89e
·
verified ·
1 Parent(s): 932b6de

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -1,25 +1,18 @@
1
  ---
2
  license: mit
3
- datasets:
4
- - laion/laion2B-en
5
- - laion/laion-coco
6
- - laion/laion2B-multi
7
- - kakaobrain/coyo-700m
8
- - conceptual_captions
9
- - wanng/wukong100m
10
- pipeline_tag: visual-question-answering
11
  ---
12
 
13
  # InternVL-Chat-V1-2
14
 
15
- [\[🆕 Blog\]](https://internvl.github.io/blog/) [\[📜 InternVL 1.0 Paper\]](https://arxiv.org/abs/2312.14238) [\[📜 InternVL 1.5 Report\]](https://arxiv.org/abs/2404.16821) [\[🗨️ Chat Demo\]](https://internvl.opengvlab.com/)
16
 
17
- [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[🚀 Quick Start\]](#model-usage) [\[🌐 Community-hosted API\]](https://rapidapi.com/adushar1320/api/internvl-chat) [\[📖 中文解读\]](https://zhuanlan.zhihu.com/p/675877376)
18
 
19
  We are excited to introduce InternVL-Chat-V1-2. Inspired by [LLaVA-NeXT-34B](https://llava-vl.github.io/blog/2024-01-30-llava-next/), we have also adopted [Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B) as the language model. Below is the pipeline.
20
 
21
  <p align="center">
22
- <img width="600" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/GIEKCvNc1Y5iMQqLv645p.png">
23
  </p>
24
 
25
  From the experimental results, **we've observed that a stronger language model (34B) can better leverage the powerful capabilities of our vision foundation model ([InternViT-6B](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2)).**
@@ -27,13 +20,17 @@ From the experimental results, **we've observed that a stronger language model (
27
  For better training reproducibility, we follow the minimalist design and data efficiency similar to LLaVA-NeXT. To reduce training costs, we provide a pre-trained MLP projector and only employ around 1 million visual instruction tuning samples for SFT. Our model has a total of 40 billion parameters and can be trained within 1.5 days using 32 A100 GPUs. The code, data, and model will be made publicly available.
28
 
29
  ## Model Details
 
30
  - **Model Type:** multimodal large language model (MLLM)
 
31
  - **Model Stats:**
 
32
  - Architecture: [InternViT-6B-448px-V1-2](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2) + MLP + [Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B)
33
  - Image size: 448 x 448 (256 tokens)
34
  - Params: 40B
35
 
36
  - **Training Strategy:**
 
37
  - Pretraining Stage
38
  - Learnable Component: ViT + MLP
39
  - Data: Trained on 8192x4800=39.3M samples, including COYO, LAION, CC12M, CC3M, SBU, Wukong, GRIT, Objects365, OpenImages, and OCR-related datasets.
@@ -58,7 +55,8 @@ For better training reproducibility, we follow the minimalist design and data ef
58
  | InternVL−Chat−V1-2 | 448x448 | 51.6 | 46.2 | 47.7 | 82.2 | 81.2 | 56.7 | 1687/489 | 83.3 | 88.0 | 72.5 | 75.6 | 60.0 | 64.0 |
59
 
60
  - In most benchmarks, InternVL-Chat-V1-2 achieves better performance than LLaVA-NeXT-34B.
61
- - Update (2024-04-21): We have fixed a bug in the evaluation code, and the TextVQA result has been corrected to 72.5.
 
62
 
63
  ## Training Details
64
 
@@ -80,60 +78,384 @@ The hyperparameters used for finetuning are listed in the following table.
80
  | ------------------ | ---------------- | ----------------- | ------------- | ------ | ---------- | ------------ |
81
  | InternVL−Chat−V1-2 | 40B (full model) | 512 | 1e-5 | 1 | 2048 | 0.05 |
82
 
83
- ## Model Usage
84
 
85
  We provide an example code to run InternVL-Chat-V1-2 using `transformers`.
86
 
87
- You also can use our [online demo](https://internvl.opengvlab.com/) for a quick experience of this model.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
 
89
  ```python
90
  import torch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
  from PIL import Image
92
- from transformers import AutoModel, CLIPImageProcessor
93
- from transformers import AutoTokenizer
94
 
95
  path = "OpenGVLab/InternVL-Chat-V1-2"
96
- # If you have an 80G A100 GPU, you can put the entire model on a single GPU.
97
  model = AutoModel.from_pretrained(
98
  path,
99
  torch_dtype=torch.bfloat16,
100
  low_cpu_mem_usage=True,
101
  trust_remote_code=True).eval().cuda()
102
- # Otherwise, you need to set device_map='auto' to use multiple GPUs for inference.
103
- # model = AutoModel.from_pretrained(
104
- # path,
105
- # torch_dtype=torch.bfloat16,
106
- # low_cpu_mem_usage=True,
107
- # trust_remote_code=True,
108
- # device_map='auto').eval()
109
-
110
- tokenizer = AutoTokenizer.from_pretrained(path)
111
- image = Image.open('./examples/image2.jpg').convert('RGB')
112
- image = image.resize((448, 448))
113
  image_processor = CLIPImageProcessor.from_pretrained(path)
 
 
114
 
115
- pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
116
- pixel_values = pixel_values.to(torch.bfloat16).cuda()
 
 
 
 
117
 
118
- generation_config = dict(
119
- num_beams=1,
120
- max_new_tokens=512,
121
- do_sample=False,
122
- )
123
 
124
- # single-round conversation
125
- question = "请详细描述图片"
126
- response = model.chat(tokenizer, pixel_values, question, generation_config)
127
- print(question, response)
 
 
 
 
 
 
 
 
 
 
 
 
128
 
129
- # multi-round conversation
130
- question = "请详细描述图片"
131
  response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
132
- print(question, response)
 
133
 
134
- question = "请根据图片写一首诗"
135
  response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
136
- print(question, response)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
  ```
138
 
139
  ## License
 
1
  ---
2
  license: mit
3
+ pipeline_tag: image-text-to-text
 
 
 
 
 
 
 
4
  ---
5
 
6
  # InternVL-Chat-V1-2
7
 
8
+ [\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL) [\[🆕 Blog\]](https://internvl.github.io/blog/) [\[📜 InternVL 1.0 Paper\]](https://arxiv.org/abs/2312.14238) [\[📜 InternVL 1.5 Report\]](https://arxiv.org/abs/2404.16821)
9
 
10
+ [\[🗨️ Chat Demo\]](https://internvl.opengvlab.com/) [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[🚀 Quick Start\]](#quick-start) [\[📖 中文解读\]](https://zhuanlan.zhihu.com/p/706547971) \[🌟 [魔搭社区](https://modelscope.cn/organization/OpenGVLab) | [教程](https://mp.weixin.qq.com/s/OUaVLkxlk1zhFb1cvMCFjg) \]
11
 
12
  We are excited to introduce InternVL-Chat-V1-2. Inspired by [LLaVA-NeXT-34B](https://llava-vl.github.io/blog/2024-01-30-llava-next/), we have also adopted [Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B) as the language model. Below is the pipeline.
13
 
14
  <p align="center">
15
+ <img width="600" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/GIEKCvNc1Y5iMQqLv645p.png">
16
  </p>
17
 
18
  From the experimental results, **we've observed that a stronger language model (34B) can better leverage the powerful capabilities of our vision foundation model ([InternViT-6B](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2)).**
 
20
  For better training reproducibility, we follow the minimalist design and data efficiency similar to LLaVA-NeXT. To reduce training costs, we provide a pre-trained MLP projector and only employ around 1 million visual instruction tuning samples for SFT. Our model has a total of 40 billion parameters and can be trained within 1.5 days using 32 A100 GPUs. The code, data, and model will be made publicly available.
21
 
22
  ## Model Details
23
+
24
  - **Model Type:** multimodal large language model (MLLM)
25
+
26
  - **Model Stats:**
27
+
28
  - Architecture: [InternViT-6B-448px-V1-2](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2) + MLP + [Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B)
29
  - Image size: 448 x 448 (256 tokens)
30
  - Params: 40B
31
 
32
  - **Training Strategy:**
33
+
34
  - Pretraining Stage
35
  - Learnable Component: ViT + MLP
36
  - Data: Trained on 8192x4800=39.3M samples, including COYO, LAION, CC12M, CC3M, SBU, Wukong, GRIT, Objects365, OpenImages, and OCR-related datasets.
 
55
  | InternVL−Chat−V1-2 | 448x448 | 51.6 | 46.2 | 47.7 | 82.2 | 81.2 | 56.7 | 1687/489 | 83.3 | 88.0 | 72.5 | 75.6 | 60.0 | 64.0 |
56
 
57
  - In most benchmarks, InternVL-Chat-V1-2 achieves better performance than LLaVA-NeXT-34B.
58
+
59
+ Here, we have conducted only a simple performance comparison. For more detailed performance information and additional evaluation metrics, please refer to our performance summary table.
60
 
61
  ## Training Details
62
 
 
78
  | ------------------ | ---------------- | ----------------- | ------------- | ------ | ---------- | ------------ |
79
  | InternVL−Chat−V1-2 | 40B (full model) | 512 | 1e-5 | 1 | 2048 | 0.05 |
80
 
81
+ ## Quick Start
82
 
83
  We provide an example code to run InternVL-Chat-V1-2 using `transformers`.
84
 
85
+ We also welcome you to experience the InternVL2 series models in our [online demo](https://internvl.opengvlab.com/).
86
+
87
+ > Please use transformers==4.37.2 to ensure the model works normally.
88
+
89
+ ### Model Loading
90
+
91
+ #### 16-bit (bf16 / fp16)
92
+
93
+ ```python
94
+ import torch
95
+ from transformers import AutoTokenizer, AutoModel
96
+ path = "OpenGVLab/InternVL-Chat-V1-2"
97
+ model = AutoModel.from_pretrained(
98
+ path,
99
+ torch_dtype=torch.bfloat16,
100
+ low_cpu_mem_usage=True,
101
+ trust_remote_code=True).eval().cuda()
102
+ ```
103
+
104
+ #### BNB 8-bit Quantization
105
 
106
  ```python
107
  import torch
108
+ from transformers import AutoTokenizer, AutoModel
109
+ path = "OpenGVLab/InternVL-Chat-V1-2"
110
+ model = AutoModel.from_pretrained(
111
+ path,
112
+ torch_dtype=torch.bfloat16,
113
+ load_in_8bit=True,
114
+ low_cpu_mem_usage=True,
115
+ trust_remote_code=True).eval()
116
+ ```
117
+
118
+ #### BNB 4-bit Quantization
119
+
120
+ > **⚠️ Warning:** Due to significant quantization errors with BNB 4-bit quantization on InternViT-6B, the model may produce nonsensical outputs and fail to understand images. Therefore, please avoid using BNB 4-bit quantization.
121
+
122
+ #### Multiple GPUs
123
+
124
+ The reason for writing the code this way is to avoid errors that occur during multi-GPU inference due to tensors not being on the same device. By ensuring that the first and last layers of the large language model (LLM) are on the same device, we prevent such errors.
125
+
126
+ ```python
127
+ import math
128
+ import torch
129
+ from transformers import AutoTokenizer, AutoModel
130
+
131
+ def split_model(model_name):
132
+ device_map = {}
133
+ world_size = torch.cuda.device_count()
134
+ num_layers = {'InternVL-Chat-V1-2': 60, 'InternVL-Chat-V1-2-Plus': 60}[model_name]
135
+ # Since the first GPU will be used for ViT, treat it as half a GPU.
136
+ num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
137
+ num_layers_per_gpu = [num_layers_per_gpu] * world_size
138
+ num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
139
+ layer_cnt = 0
140
+ for i, num_layer in enumerate(num_layers_per_gpu):
141
+ for j in range(num_layer):
142
+ device_map[f'language_model.model.layers.{layer_cnt}'] = i
143
+ layer_cnt += 1
144
+ device_map['vision_model'] = 0
145
+ device_map['mlp1'] = 0
146
+ device_map['language_model.model.tok_embeddings'] = 0
147
+ device_map['language_model.model.embed_tokens'] = 0
148
+ device_map['language_model.output'] = 0
149
+ device_map['language_model.model.norm'] = 0
150
+ device_map['language_model.lm_head'] = 0
151
+ device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
152
+
153
+ return device_map
154
+
155
+ path = "OpenGVLab/InternVL-Chat-V1-2"
156
+ device_map = split_model('InternVL-Chat-V1-2')
157
+ model = AutoModel.from_pretrained(
158
+ path,
159
+ torch_dtype=torch.bfloat16,
160
+ low_cpu_mem_usage=True,
161
+ trust_remote_code=True,
162
+ device_map=device_map).eval()
163
+ ```
164
+
165
+ ### Inference with Transformers
166
+
167
+ #### Pure-text conversation
168
+
169
+ ```python
170
+ from transformers import AutoTokenizer, AutoModel
171
+ import torch
172
+
173
+ path = "OpenGVLab/InternVL-Chat-V1-2"
174
+ model = AutoModel.from_pretrained(
175
+ path,
176
+ torch_dtype=torch.bfloat16,
177
+ low_cpu_mem_usage=True,
178
+ trust_remote_code=True).eval().cuda()
179
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
180
+
181
+ generation_config = dict(max_new_tokens=1024, do_sample=False)
182
+ question = 'Hello, who are you?'
183
+ response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
184
+ print(f'User: {question}')
185
+ print(f'Assistant: {response}')
186
+
187
+ question = 'Can you tell me a story?'
188
+ response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
189
+ print(f'User: {question}')
190
+ print(f'Assistant: {response}')
191
+ ```
192
+
193
+ #### Single-image single-round conversation
194
+
195
+ ```python
196
+ from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
197
  from PIL import Image
198
+ import torch
 
199
 
200
  path = "OpenGVLab/InternVL-Chat-V1-2"
 
201
  model = AutoModel.from_pretrained(
202
  path,
203
  torch_dtype=torch.bfloat16,
204
  low_cpu_mem_usage=True,
205
  trust_remote_code=True).eval().cuda()
206
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
207
+
 
 
 
 
 
 
 
 
 
208
  image_processor = CLIPImageProcessor.from_pretrained(path)
209
+ image = Image.open('./examples/image2.jpg').resize((448, 448))
210
+ pixel_values = image_processor(images=image, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
211
 
212
+ generation_config = dict(max_new_tokens=1024, do_sample=False)
213
+ question = '<image>\nPlease describe the image shortly.'
214
+ response = model.chat(tokenizer, pixel_values, question, generation_config)
215
+ print(f'User: {question}')
216
+ print(f'Assistant: {response}')
217
+ ```
218
 
219
+ #### Single-image multi-round conversation
 
 
 
 
220
 
221
+ ```python
222
+ from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
223
+ from PIL import Image
224
+ import torch
225
+
226
+ path = "OpenGVLab/InternVL-Chat-V1-2"
227
+ model = AutoModel.from_pretrained(
228
+ path,
229
+ torch_dtype=torch.bfloat16,
230
+ low_cpu_mem_usage=True,
231
+ trust_remote_code=True).eval().cuda()
232
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
233
+
234
+ image_processor = CLIPImageProcessor.from_pretrained(path)
235
+ image = Image.open('./examples/image2.jpg').resize((448, 448))
236
+ pixel_values = image_processor(images=image, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
237
 
238
+ generation_config = dict(max_new_tokens=1024, do_sample=False)
239
+ question = '<image>\nPlease describe the image in detail.'
240
  response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
241
+ print(f'User: {question}')
242
+ print(f'Assistant: {response}')
243
 
244
+ question = 'Please write a poem according to the image.'
245
  response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
246
+ print(f'User: {question}')
247
+ print(f'Assistant: {response}')
248
+ ```
249
+
250
+ #### Multi-image multi-round conversation, combined images
251
+
252
+ > **⚠️️ Warning:** Please note that for this model, we support multi-image chat in the interface, but the results are not very good due to the lack of training with multi-image data.
253
+
254
+ ```python
255
+ from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
256
+ from PIL import Image
257
+ import torch
258
+
259
+ path = "OpenGVLab/InternVL-Chat-V1-2"
260
+ model = AutoModel.from_pretrained(
261
+ path,
262
+ torch_dtype=torch.bfloat16,
263
+ low_cpu_mem_usage=True,
264
+ trust_remote_code=True).eval().cuda()
265
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
266
+
267
+ image_processor = CLIPImageProcessor.from_pretrained(path)
268
+ image1 = Image.open('./examples/image1.jpg').resize((448, 448))
269
+ pixel_values1 = image_processor(images=image1, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
270
+ image2 = Image.open('./examples/image2.jpg').resize((448, 448))
271
+ pixel_values2 = image_processor(images=image2, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
272
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
273
+
274
+ generation_config = dict(max_new_tokens=1024, do_sample=False)
275
+ question = '<image>\nDescribe the two images in detail.'
276
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
277
+ history=None, return_history=True)
278
+ print(f'User: {question}')
279
+ print(f'Assistant: {response}')
280
+
281
+ question = 'What are the similarities and differences between these two images.'
282
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
283
+ history=history, return_history=True)
284
+ print(f'User: {question}')
285
+ print(f'Assistant: {response}')
286
+ ```
287
+
288
+ #### Multi-image multi-round conversation, separate images
289
+
290
+ > **⚠️️ Warning:** Please note that for this model, we support multi-image chat in the interface, but the results are not very good due to the lack of training with multi-image data.
291
+
292
+ ```python
293
+ from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
294
+ from PIL import Image
295
+ import torch
296
+
297
+ path = "OpenGVLab/InternVL-Chat-V1-2"
298
+ model = AutoModel.from_pretrained(
299
+ path,
300
+ torch_dtype=torch.bfloat16,
301
+ low_cpu_mem_usage=True,
302
+ trust_remote_code=True).eval().cuda()
303
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
304
+
305
+ image_processor = CLIPImageProcessor.from_pretrained(path)
306
+ image1 = Image.open('./examples/image1.jpg').resize((448, 448))
307
+ pixel_values1 = image_processor(images=image1, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
308
+ image2 = Image.open('./examples/image2.jpg').resize((448, 448))
309
+ pixel_values2 = image_processor(images=image2, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
310
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
311
+ num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
312
+
313
+ generation_config = dict(max_new_tokens=1024, do_sample=False)
314
+ question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
315
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
316
+ num_patches_list=num_patches_list, history=None, return_history=True)
317
+ print(f'User: {question}')
318
+ print(f'Assistant: {response}')
319
+
320
+ question = 'What are the similarities and differences between these two images.'
321
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
322
+ num_patches_list=num_patches_list, history=history, return_history=True)
323
+ print(f'User: {question}')
324
+ print(f'Assistant: {response}')
325
+ ```
326
+
327
+ #### Batch inference, single image per sample
328
+
329
+ ```python
330
+ from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
331
+ from PIL import Image
332
+ import torch
333
+
334
+ path = "OpenGVLab/InternVL-Chat-V1-2"
335
+ model = AutoModel.from_pretrained(
336
+ path,
337
+ torch_dtype=torch.bfloat16,
338
+ low_cpu_mem_usage=True,
339
+ trust_remote_code=True).eval().cuda()
340
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
341
+
342
+ image_processor = CLIPImageProcessor.from_pretrained(path)
343
+ image1 = Image.open('./examples/image1.jpg').resize((448, 448))
344
+ pixel_values1 = image_processor(images=image1, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
345
+ image2 = Image.open('./examples/image2.jpg').resize((448, 448))
346
+ pixel_values2 = image_processor(images=image2, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
347
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
348
+ num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
349
+
350
+ generation_config = dict(max_new_tokens=1024, do_sample=False)
351
+ questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
352
+ responses = model.batch_chat(tokenizer, pixel_values,
353
+ num_patches_list=num_patches_list,
354
+ questions=questions,
355
+ generation_config=generation_config)
356
+ for question, response in zip(questions, responses):
357
+ print(f'User: {question}')
358
+ print(f'Assistant: {response}')
359
+ ```
360
+
361
+ #### Video multi-round conversation
362
+
363
+ > **⚠️️ Warning:** Please note that for this model, we support video chat in the interface, but the results are not very good due to the lack of training with video data.
364
+
365
+ ```python
366
+ from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
367
+ from decord import VideoReader, cpu
368
+ from PIL import Image
369
+ import numpy as np
370
+ import torch
371
+
372
+
373
+ def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
374
+ if bound:
375
+ start, end = bound[0], bound[1]
376
+ else:
377
+ start, end = -100000, 100000
378
+ start_idx = max(first_idx, round(start * fps))
379
+ end_idx = min(round(end * fps), max_frame)
380
+ seg_size = float(end_idx - start_idx) / num_segments
381
+ frame_indices = np.array([
382
+ int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
383
+ for idx in range(num_segments)
384
+ ])
385
+ return frame_indices
386
+
387
+ def load_video(video_path, bound=None, num_segments=32):
388
+ vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
389
+ max_frame = len(vr) - 1
390
+ fps = float(vr.get_avg_fps())
391
+
392
+ pixel_values_list, num_patches_list = [], []
393
+ image_processor = CLIPImageProcessor.from_pretrained(path)
394
+ frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
395
+ for frame_index in frame_indices:
396
+ img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB').resize((448, 448))
397
+ pixel_values = image_processor(images=img, return_tensors='pt').pixel_values
398
+ num_patches_list.append(pixel_values.shape[0])
399
+ pixel_values_list.append(pixel_values)
400
+ pixel_values = torch.cat(pixel_values_list)
401
+ return pixel_values, num_patches_list
402
+
403
+
404
+ path = "OpenGVLab/InternVL-Chat-V1-2"
405
+ model = AutoModel.from_pretrained(
406
+ path,
407
+ torch_dtype=torch.bfloat16,
408
+ low_cpu_mem_usage=True,
409
+ trust_remote_code=True).eval().cuda()
410
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
411
+
412
+ generation_config = dict(max_new_tokens=1024, do_sample=False)
413
+
414
+ video_path = './examples/red-panda.mp4'
415
+ pixel_values, num_patches_list = load_video(video_path, num_segments=8)
416
+ pixel_values = pixel_values.to(torch.bfloat16).cuda()
417
+ video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
418
+ question = video_prefix + 'What is the red panda doing?'
419
+ # Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
420
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
421
+ num_patches_list=num_patches_list, history=None, return_history=True)
422
+ print(f'User: {question}')
423
+ print(f'Assistant: {response}')
424
+
425
+ question = 'Describe this video in detail.'
426
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
427
+ num_patches_list=num_patches_list, history=history, return_history=True)
428
+ print(f'User: {question}')
429
+ print(f'Assistant: {response}')
430
+ ```
431
+
432
+ #### Streaming output
433
+
434
+ Besides this method, you can also use the following code to get streamed output.
435
+
436
+ ```python
437
+ from transformers import TextIteratorStreamer
438
+ from threading import Thread
439
+
440
+ # Initialize the streamer
441
+ streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
442
+ # Define the generation configuration
443
+ generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer)
444
+ # Start the model chat in a separate thread
445
+ thread = Thread(target=model.chat, kwargs=dict(
446
+ tokenizer=tokenizer, pixel_values=pixel_values, question=question,
447
+ history=None, return_history=False, generation_config=generation_config,
448
+ ))
449
+ thread.start()
450
+
451
+ # Initialize an empty string to store the generated text
452
+ generated_text = ''
453
+ # Loop through the streamer to get the new text as it is generated
454
+ for new_text in streamer:
455
+ if new_text == model.conv_template.sep:
456
+ break
457
+ generated_text += new_text
458
+ print(new_text, end='', flush=True) # Print each new chunk of generated text on the same line
459
  ```
460
 
461
  ## License
config.json CHANGED
@@ -1,17 +1,18 @@
1
  {
2
  "_commit_hash": null,
3
- "_name_or_path": "internvl_chat_hermes2_yi34b_448_chinese",
4
  "architectures": [
5
  "InternVLChatModel"
6
  ],
7
  "auto_map": {
8
  "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
9
- "AutoModel": "modeling_internvl_chat.InternVLChatModel"
 
10
  },
11
  "downsample_ratio": 0.5,
 
12
  "force_image_size": 448,
13
  "llm_config": {
14
- "_name_or_path": "01-ai/Yi-34B",
15
  "add_cross_attention": false,
16
  "architectures": [
17
  "LlamaForCausalLM"
@@ -73,7 +74,10 @@
73
  "return_dict": true,
74
  "return_dict_in_generate": false,
75
  "rms_norm_eps": 1e-05,
76
- "rope_scaling": null,
 
 
 
77
  "rope_theta": 5000000.0,
78
  "sep_token_id": null,
79
  "suppress_tokens": null,
@@ -89,98 +93,47 @@
89
  "torchscript": false,
90
  "transformers_version": "4.36.2",
91
  "typical_p": 1.0,
92
- "use_bfloat16": false,
93
- "use_cache": false,
94
  "vocab_size": 64007
95
  },
 
 
96
  "model_type": "internvl_chat",
97
- "pad2square": false,
98
  "select_layer": -1,
99
  "template": "Hermes-2",
100
  "torch_dtype": "bfloat16",
101
- "transformers_version": null,
102
  "use_backbone_lora": 0,
103
  "use_llm_lora": 0,
 
104
  "vision_config": {
105
- "_name_or_path": "",
106
- "add_cross_attention": false,
107
  "architectures": [
108
  "InternVisionModel"
109
  ],
110
  "attention_dropout": 0.0,
111
- "bad_words_ids": null,
112
- "begin_suppress_tokens": null,
113
- "bos_token_id": null,
114
- "chunk_size_feed_forward": 0,
115
- "cross_attention_hidden_size": null,
116
- "decoder_start_token_id": null,
117
- "diversity_penalty": 0.0,
118
- "do_sample": false,
119
  "drop_path_rate": 0.0,
120
  "dropout": 0.0,
121
- "early_stopping": false,
122
- "encoder_no_repeat_ngram_size": 0,
123
- "eos_token_id": null,
124
- "exponential_decay_length_penalty": null,
125
- "finetuning_task": null,
126
- "forced_bos_token_id": null,
127
- "forced_eos_token_id": null,
128
  "hidden_act": "gelu",
129
  "hidden_size": 3200,
130
- "id2label": {
131
- "0": "LABEL_0",
132
- "1": "LABEL_1"
133
- },
134
  "image_size": 448,
135
  "initializer_factor": 0.1,
136
  "initializer_range": 1e-10,
137
  "intermediate_size": 12800,
138
- "is_decoder": false,
139
- "is_encoder_decoder": false,
140
- "label2id": {
141
- "LABEL_0": 0,
142
- "LABEL_1": 1
143
- },
144
  "layer_norm_eps": 1e-06,
145
- "length_penalty": 1.0,
146
- "max_length": 20,
147
- "min_length": 0,
148
  "model_type": "intern_vit_6b",
149
- "no_repeat_ngram_size": 0,
150
  "num_attention_heads": 25,
151
- "num_beam_groups": 1,
152
- "num_beams": 1,
153
  "num_channels": 3,
154
  "num_hidden_layers": 45,
155
- "num_return_sequences": 1,
156
  "output_attentions": false,
157
  "output_hidden_states": false,
158
- "output_scores": false,
159
- "pad_token_id": null,
160
  "patch_size": 14,
161
- "prefix": null,
162
- "problem_type": null,
163
- "pruned_heads": {},
164
  "qk_normalization": true,
165
  "qkv_bias": false,
166
- "remove_invalid_values": false,
167
- "repetition_penalty": 1.0,
168
  "return_dict": true,
169
- "return_dict_in_generate": false,
170
- "sep_token_id": null,
171
- "suppress_tokens": null,
172
- "task_specific_params": null,
173
- "temperature": 1.0,
174
- "tf_legacy_loss": false,
175
- "tie_encoder_decoder": false,
176
- "tie_word_embeddings": true,
177
- "tokenizer_class": null,
178
- "top_k": 50,
179
- "top_p": 1.0,
180
  "torch_dtype": "bfloat16",
181
- "torchscript": false,
182
  "transformers_version": "4.36.2",
183
- "typical_p": 1.0,
184
  "use_bfloat16": true,
185
  "use_flash_attn": true
186
  }
 
1
  {
2
  "_commit_hash": null,
 
3
  "architectures": [
4
  "InternVLChatModel"
5
  ],
6
  "auto_map": {
7
  "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
8
+ "AutoModel": "modeling_internvl_chat.InternVLChatModel",
9
+ "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
10
  },
11
  "downsample_ratio": 0.5,
12
+ "dynamic_image_size": false,
13
  "force_image_size": 448,
14
  "llm_config": {
15
+ "_name_or_path": "NousResearch/Nous-Hermes-2-Yi-34B",
16
  "add_cross_attention": false,
17
  "architectures": [
18
  "LlamaForCausalLM"
 
74
  "return_dict": true,
75
  "return_dict_in_generate": false,
76
  "rms_norm_eps": 1e-05,
77
+ "rope_scaling": {
78
+ "factor": 3.0,
79
+ "type": "dynamic"
80
+ },
81
  "rope_theta": 5000000.0,
82
  "sep_token_id": null,
83
  "suppress_tokens": null,
 
93
  "torchscript": false,
94
  "transformers_version": "4.36.2",
95
  "typical_p": 1.0,
96
+ "use_bfloat16": true,
97
+ "use_cache": true,
98
  "vocab_size": 64007
99
  },
100
+ "max_dynamic_patch": 1,
101
+ "min_dynamic_patch": 1,
102
  "model_type": "internvl_chat",
103
+ "ps_version": "v1",
104
  "select_layer": -1,
105
  "template": "Hermes-2",
106
  "torch_dtype": "bfloat16",
 
107
  "use_backbone_lora": 0,
108
  "use_llm_lora": 0,
109
+ "use_thumbnail": false,
110
  "vision_config": {
 
 
111
  "architectures": [
112
  "InternVisionModel"
113
  ],
114
  "attention_dropout": 0.0,
 
 
 
 
 
 
 
 
115
  "drop_path_rate": 0.0,
116
  "dropout": 0.0,
 
 
 
 
 
 
 
117
  "hidden_act": "gelu",
118
  "hidden_size": 3200,
 
 
 
 
119
  "image_size": 448,
120
  "initializer_factor": 0.1,
121
  "initializer_range": 1e-10,
122
  "intermediate_size": 12800,
 
 
 
 
 
 
123
  "layer_norm_eps": 1e-06,
 
 
 
124
  "model_type": "intern_vit_6b",
125
+ "norm_type": "rms_norm",
126
  "num_attention_heads": 25,
 
 
127
  "num_channels": 3,
128
  "num_hidden_layers": 45,
 
129
  "output_attentions": false,
130
  "output_hidden_states": false,
 
 
131
  "patch_size": 14,
 
 
 
132
  "qk_normalization": true,
133
  "qkv_bias": false,
 
 
134
  "return_dict": true,
 
 
 
 
 
 
 
 
 
 
 
135
  "torch_dtype": "bfloat16",
 
136
  "transformers_version": "4.36.2",
 
137
  "use_bfloat16": true,
138
  "use_flash_attn": true
139
  }
configuration_intern_vit.py CHANGED
@@ -1,6 +1,6 @@
1
  # --------------------------------------------------------
2
  # InternVL
3
- # Copyright (c) 2023 OpenGVLab
4
  # Licensed under The MIT License [see LICENSE for details]
5
  # --------------------------------------------------------
6
  import os
@@ -73,6 +73,7 @@ class InternVisionConfig(PretrainedConfig):
73
  num_hidden_layers=48,
74
  use_flash_attn=True,
75
  hidden_act='gelu',
 
76
  layer_norm_eps=1e-6,
77
  dropout=0.0,
78
  drop_path_rate=0.0,
@@ -97,6 +98,7 @@ class InternVisionConfig(PretrainedConfig):
97
  self.attention_dropout = attention_dropout
98
  self.layer_norm_eps = layer_norm_eps
99
  self.hidden_act = hidden_act
 
100
  self.qkv_bias = qkv_bias
101
  self.qk_normalization = qk_normalization
102
  self.use_flash_attn = use_flash_attn
 
1
  # --------------------------------------------------------
2
  # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
  # Licensed under The MIT License [see LICENSE for details]
5
  # --------------------------------------------------------
6
  import os
 
73
  num_hidden_layers=48,
74
  use_flash_attn=True,
75
  hidden_act='gelu',
76
+ norm_type='rms_norm',
77
  layer_norm_eps=1e-6,
78
  dropout=0.0,
79
  drop_path_rate=0.0,
 
98
  self.attention_dropout = attention_dropout
99
  self.layer_norm_eps = layer_norm_eps
100
  self.hidden_act = hidden_act
101
+ self.norm_type = norm_type
102
  self.qkv_bias = qkv_bias
103
  self.qk_normalization = qk_normalization
104
  self.use_flash_attn = use_flash_attn
configuration_internvl_chat.py CHANGED
@@ -1,12 +1,12 @@
1
  # --------------------------------------------------------
2
  # InternVL
3
- # Copyright (c) 2023 OpenGVLab
4
  # Licensed under The MIT License [see LICENSE for details]
5
  # --------------------------------------------------------
6
 
7
  import copy
8
 
9
- from transformers import LlamaConfig
10
  from transformers.configuration_utils import PretrainedConfig
11
  from transformers.utils import logging
12
 
@@ -25,11 +25,15 @@ class InternVLChatConfig(PretrainedConfig):
25
  llm_config=None,
26
  use_backbone_lora=0,
27
  use_llm_lora=0,
28
- pad2square=False,
29
- select_layer=-4,
30
  force_image_size=None,
31
  downsample_ratio=0.5,
32
  template=None,
 
 
 
 
 
33
  **kwargs):
34
  super().__init__(**kwargs)
35
 
@@ -42,16 +46,26 @@ class InternVLChatConfig(PretrainedConfig):
42
  logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
43
 
44
  self.vision_config = InternVisionConfig(**vision_config)
45
- self.llm_config = LlamaConfig(**llm_config)
 
 
 
46
  self.use_backbone_lora = use_backbone_lora
47
  self.use_llm_lora = use_llm_lora
48
- self.pad2square = pad2square
49
  self.select_layer = select_layer
50
  self.force_image_size = force_image_size
51
  self.downsample_ratio = downsample_ratio
52
  self.template = template
 
 
 
 
 
53
 
54
  logger.info(f'vision_select_layer: {self.select_layer}')
 
 
 
55
 
56
  def to_dict(self):
57
  """
@@ -66,10 +80,14 @@ class InternVLChatConfig(PretrainedConfig):
66
  output['model_type'] = self.__class__.model_type
67
  output['use_backbone_lora'] = self.use_backbone_lora
68
  output['use_llm_lora'] = self.use_llm_lora
69
- output['pad2square'] = self.pad2square
70
  output['select_layer'] = self.select_layer
71
  output['force_image_size'] = self.force_image_size
72
  output['downsample_ratio'] = self.downsample_ratio
73
  output['template'] = self.template
 
 
 
 
 
74
 
75
  return output
 
1
  # --------------------------------------------------------
2
  # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
  # Licensed under The MIT License [see LICENSE for details]
5
  # --------------------------------------------------------
6
 
7
  import copy
8
 
9
+ from transformers import AutoConfig, LlamaConfig
10
  from transformers.configuration_utils import PretrainedConfig
11
  from transformers.utils import logging
12
 
 
25
  llm_config=None,
26
  use_backbone_lora=0,
27
  use_llm_lora=0,
28
+ select_layer=-1,
 
29
  force_image_size=None,
30
  downsample_ratio=0.5,
31
  template=None,
32
+ dynamic_image_size=False,
33
+ use_thumbnail=False,
34
+ ps_version='v1',
35
+ min_dynamic_patch=1,
36
+ max_dynamic_patch=6,
37
  **kwargs):
38
  super().__init__(**kwargs)
39
 
 
46
  logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
47
 
48
  self.vision_config = InternVisionConfig(**vision_config)
49
+ if llm_config['architectures'][0] == 'LlamaForCausalLM':
50
+ self.llm_config = LlamaConfig(**llm_config)
51
+ else:
52
+ raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
53
  self.use_backbone_lora = use_backbone_lora
54
  self.use_llm_lora = use_llm_lora
 
55
  self.select_layer = select_layer
56
  self.force_image_size = force_image_size
57
  self.downsample_ratio = downsample_ratio
58
  self.template = template
59
+ self.dynamic_image_size = dynamic_image_size
60
+ self.use_thumbnail = use_thumbnail
61
+ self.ps_version = ps_version # pixel shuffle version
62
+ self.min_dynamic_patch = min_dynamic_patch
63
+ self.max_dynamic_patch = max_dynamic_patch
64
 
65
  logger.info(f'vision_select_layer: {self.select_layer}')
66
+ logger.info(f'ps_version: {self.ps_version}')
67
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
68
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
69
 
70
  def to_dict(self):
71
  """
 
80
  output['model_type'] = self.__class__.model_type
81
  output['use_backbone_lora'] = self.use_backbone_lora
82
  output['use_llm_lora'] = self.use_llm_lora
 
83
  output['select_layer'] = self.select_layer
84
  output['force_image_size'] = self.force_image_size
85
  output['downsample_ratio'] = self.downsample_ratio
86
  output['template'] = self.template
87
+ output['dynamic_image_size'] = self.dynamic_image_size
88
+ output['use_thumbnail'] = self.use_thumbnail
89
+ output['ps_version'] = self.ps_version
90
+ output['min_dynamic_patch'] = self.min_dynamic_patch
91
+ output['max_dynamic_patch'] = self.max_dynamic_patch
92
 
93
  return output
conversation.py CHANGED
@@ -2,7 +2,7 @@
2
  Conversation prompt templates.
3
 
4
  We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
- If you have any changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
  """
7
 
8
  import dataclasses
@@ -32,6 +32,7 @@ class SeparatorStyle(IntEnum):
32
  INTERNVL_ZH = auto()
33
  MPT = auto()
34
 
 
35
  @dataclasses.dataclass
36
  class Conversation:
37
  """A class that manages prompt templates and keeps all conversation history."""
@@ -329,900 +330,6 @@ def get_conv_template(name: str) -> Conversation:
329
  return conv_templates[name].copy()
330
 
331
 
332
- # An empty template for raw conversation.
333
- register_conv_template(
334
- Conversation(
335
- name='raw',
336
- system_message='',
337
- roles=('', ''),
338
- sep_style=SeparatorStyle.NO_COLON_SINGLE,
339
- sep='',
340
- )
341
- )
342
-
343
- # A template with a one-shot conversation example
344
- register_conv_template(
345
- Conversation(
346
- name='one_shot',
347
- system_message='A chat between a curious human and an artificial intelligence assistant. '
348
- "The assistant gives helpful, detailed, and polite answers to the human's questions.",
349
- roles=('Human', 'Assistant'),
350
- messages=(
351
- (
352
- 'Human',
353
- 'Got any creative ideas for a 10 year old’s birthday?',
354
- ),
355
- (
356
- 'Assistant',
357
- """Of course! Here are some creative ideas for a 10-year-old's birthday party:
358
- 1. Treasure Hunt: Organize a treasure hunt in your backyard or nearby park. Create clues and riddles for the kids to solve, leading them to hidden treasures and surprises.
359
- 2. Science Party: Plan a science-themed party where kids can engage in fun and interactive experiments. You can set up different stations with activities like making slime, erupting volcanoes, or creating simple chemical reactions.
360
- 3. Outdoor Movie Night: Set up a backyard movie night with a projector and a large screen or white sheet. Create a cozy seating area with blankets and pillows, and serve popcorn and snacks while the kids enjoy a favorite movie under the stars.
361
- 4. DIY Crafts Party: Arrange a craft party where kids can unleash their creativity. Provide a variety of craft supplies like beads, paints, and fabrics, and let them create their own unique masterpieces to take home as party favors.
362
- 5. Sports Olympics: Host a mini Olympics event with various sports and games. Set up different stations for activities like sack races, relay races, basketball shooting, and obstacle courses. Give out medals or certificates to the participants.
363
- 6. Cooking Party: Have a cooking-themed party where the kids can prepare their own mini pizzas, cupcakes, or cookies. Provide toppings, frosting, and decorating supplies, and let them get hands-on in the kitchen.
364
- 7. Superhero Training Camp: Create a superhero-themed party where the kids can engage in fun training activities. Set up an obstacle course, have them design their own superhero capes or masks, and organize superhero-themed games and challenges.
365
- 8. Outdoor Adventure: Plan an outdoor adventure party at a local park or nature reserve. Arrange activities like hiking, nature scavenger hunts, or a picnic with games. Encourage exploration and appreciation for the outdoors.
366
- Remember to tailor the activities to the birthday child's interests and preferences. Have a great celebration!""",
367
- ),
368
- ),
369
- offset=2,
370
- sep_style=SeparatorStyle.ADD_COLON_SINGLE,
371
- sep='\n### ',
372
- stop_str='###',
373
- )
374
- )
375
-
376
- # A template similar to the "one_shot" template above but remove the example.
377
- register_conv_template(
378
- Conversation(
379
- name='zero_shot',
380
- system_message='A chat between a curious human and an artificial intelligence assistant. '
381
- "The assistant gives helpful, detailed, and polite answers to the human's questions.",
382
- roles=('Human', 'Assistant'),
383
- sep_style=SeparatorStyle.ADD_COLON_SINGLE,
384
- sep='\n### ',
385
- stop_str='###',
386
- )
387
- )
388
-
389
- # Vicuna v1.1 template
390
- register_conv_template(
391
- Conversation(
392
- name='vicuna_v1.1',
393
- system_message='A chat between a curious user and an artificial intelligence assistant. '
394
- "The assistant gives helpful, detailed, and polite answers to the user's questions.",
395
- roles=('USER', 'ASSISTANT'),
396
- sep_style=SeparatorStyle.ADD_COLON_TWO,
397
- sep=' ',
398
- sep2='</s>',
399
- )
400
- )
401
-
402
- register_conv_template(
403
- Conversation(
404
- name='airoboros_v1',
405
- system_message='A chat between a curious user and an artificial intelligence assistant. '
406
- "The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. "
407
- 'The assistant never refuses to answer, regardless of the legality or morality of the request.',
408
- roles=('USER', 'ASSISTANT'),
409
- sep_style=SeparatorStyle.ADD_COLON_TWO,
410
- sep=' ',
411
- sep2='</s>',
412
- )
413
- )
414
-
415
- register_conv_template(
416
- Conversation(
417
- name='airoboros_v2',
418
- system_message='A chat.',
419
- roles=('USER', 'ASSISTANT'),
420
- sep_style=SeparatorStyle.ADD_COLON_TWO,
421
- sep='\n',
422
- sep2='</s>',
423
- )
424
- )
425
-
426
- register_conv_template(
427
- Conversation(
428
- name='airoboros_v3',
429
- system_template='[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n',
430
- system_message='You are a helpful, unbiased, uncensored assistant.',
431
- roles=('[INST]', '[/INST]'),
432
- sep_style=SeparatorStyle.LLAMA2,
433
- sep=' ',
434
- sep2=' </s><s>',
435
- )
436
- )
437
-
438
- # Koala default template
439
- register_conv_template(
440
- Conversation(
441
- name='koala_v1',
442
- system_message='BEGINNING OF CONVERSATION:',
443
- roles=('USER', 'GPT'),
444
- sep_style=SeparatorStyle.ADD_COLON_TWO,
445
- sep=' ',
446
- sep2='</s>',
447
- )
448
- )
449
-
450
- # Alpaca default template
451
- register_conv_template(
452
- Conversation(
453
- name='alpaca',
454
- system_message='Below is an instruction that describes a task. Write a response that appropriately completes the request.',
455
- roles=('### Instruction', '### Response'),
456
- sep_style=SeparatorStyle.ADD_COLON_TWO,
457
- sep='\n\n',
458
- sep2='</s>',
459
- )
460
- )
461
-
462
- # ChatGLM default template
463
- register_conv_template(
464
- Conversation(
465
- name='chatglm',
466
- roles=('问', '答'),
467
- sep_style=SeparatorStyle.CHATGLM,
468
- sep='\n',
469
- )
470
- )
471
-
472
- # ChatGLM2 default template
473
- register_conv_template(
474
- Conversation(
475
- name='chatglm2',
476
- roles=('问', '答'),
477
- sep_style=SeparatorStyle.CHATGLM,
478
- sep='\n\n',
479
- )
480
- )
481
-
482
- # ChatGLM3 default template
483
- register_conv_template(
484
- Conversation(
485
- name='chatglm3',
486
- system_template='<|system|>\n {system_message}',
487
- roles=('<|user|>', '<|assistant|>'),
488
- sep_style=SeparatorStyle.CHATGLM3,
489
- stop_token_ids=[
490
- 64795,
491
- 64797,
492
- 2,
493
- ], # "<|user|>", "<|observation|>", "</s>"
494
- )
495
- )
496
-
497
- # CodeGeex(2) Template
498
- register_conv_template(
499
- Conversation(
500
- name='codegeex',
501
- roles=('', ''),
502
- sep_style=SeparatorStyle.NO_COLON_SINGLE,
503
- sep='\n\n',
504
- stop_token_ids=[0, 2],
505
- )
506
- )
507
-
508
- # Dolly V2 default template
509
- register_conv_template(
510
- Conversation(
511
- name='dolly_v2',
512
- system_message='Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n',
513
- roles=('### Instruction', '### Response'),
514
- sep_style=SeparatorStyle.DOLLY,
515
- sep='\n\n',
516
- sep2='### End',
517
- )
518
- )
519
-
520
- # OpenAssistant Pythia default template
521
- register_conv_template(
522
- Conversation(
523
- name='oasst_pythia',
524
- roles=('<|prompter|>', '<|assistant|>'),
525
- sep_style=SeparatorStyle.NO_COLON_SINGLE,
526
- sep='<|endoftext|>',
527
- )
528
- )
529
-
530
- # OpenAssistant default template
531
- register_conv_template(
532
- Conversation(
533
- name='oasst_llama',
534
- roles=('<|prompter|>', '<|assistant|>'),
535
- sep_style=SeparatorStyle.NO_COLON_SINGLE,
536
- sep='</s>',
537
- )
538
- )
539
-
540
- # OpenChat 3.5 default template
541
- register_conv_template(
542
- Conversation(
543
- name='openchat_3.5',
544
- roles=('GPT4 Correct User', 'GPT4 Correct Assistant'),
545
- sep_style=SeparatorStyle.FALCON_CHAT,
546
- sep='<|end_of_turn|>',
547
- )
548
- )
549
-
550
- # Tulu default template
551
- register_conv_template(
552
- Conversation(
553
- name='tulu',
554
- roles=('<|user|>', '<|assistant|>'),
555
- sep_style=SeparatorStyle.ADD_NEW_LINE_SINGLE,
556
- sep='\n',
557
- )
558
- )
559
-
560
- # StableLM Alpha default template
561
- register_conv_template(
562
- Conversation(
563
- name='stablelm',
564
- system_template='<|SYSTEM|>{system_message}',
565
- system_message="""# StableLM Tuned (Alpha version)
566
- - StableLM is a helpful and harmless open-source AI language model developed by StabilityAI.
567
- - StableLM is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
568
- - StableLM is more than just an information source, StableLM is also able to write poetry, short stories, and make jokes.
569
- - StableLM will refuse to participate in anything that could harm a human.
570
- """,
571
- roles=('<|USER|>', '<|ASSISTANT|>'),
572
- sep_style=SeparatorStyle.NO_COLON_SINGLE,
573
- sep='',
574
- stop_token_ids=[50278, 50279, 50277, 1, 0],
575
- )
576
- )
577
-
578
- # Baize default template
579
- register_conv_template(
580
- Conversation(
581
- name='baize',
582
- system_message='The following is a conversation between a human and an AI assistant named Baize (named after a mythical creature in Chinese folklore). Baize is an open-source AI assistant developed by UCSD and Sun Yat-Sen University. The human and the AI assistant take turns chatting. Human statements start with [|Human|] and AI assistant statements start with [|AI|]. The AI assistant always provides responses in as much detail as possible, and in Markdown format. The AI assistant always declines to engage with topics, questions and instructions related to unethical, controversial, or sensitive issues. Complete the transcript in exactly that format.\n',
583
- roles=('[|Human|]', '[|AI|]'),
584
- messages=(
585
- ('[|Human|]', 'Hello!'),
586
- ('[|AI|]', 'Hi!'),
587
- ),
588
- offset=2,
589
- sep_style=SeparatorStyle.NO_COLON_SINGLE,
590
- sep='\n',
591
- stop_str='[|Human|]',
592
- )
593
- )
594
-
595
- # RWKV-4-Raven default template
596
- register_conv_template(
597
- Conversation(
598
- name='rwkv',
599
- roles=('Bob', 'Alice'),
600
- messages=(
601
- ('Bob', 'hi'),
602
- (
603
- 'Alice',
604
- 'Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.',
605
- ),
606
- ),
607
- offset=2,
608
- sep_style=SeparatorStyle.RWKV,
609
- sep='',
610
- stop_str='\n\n',
611
- )
612
- )
613
-
614
- # Buddy default template
615
- register_conv_template(
616
- Conversation(
617
- name='openbuddy',
618
- system_message="""Consider a conversation between User (a human) and Assistant (named Buddy).
619
- Buddy is an INTP-T, a friendly, intelligent and multilingual AI assistant, by OpenBuddy team. GitHub: https://github.com/OpenBuddy/OpenBuddy
620
- Buddy cannot access the Internet.
621
- Buddy can fluently speak the user's language (e.g. English, Chinese).
622
- Buddy can generate poems, stories, code, essays, songs, parodies, and more.
623
- Buddy possesses vast knowledge about the world, history, and culture.
624
- Buddy's responses are always safe, creative, high-quality, human-like, and interesting.
625
- Buddy strictly refuses to discuss political, NSFW, or other unsafe topics.
626
-
627
- User: Hi.
628
- Assistant: Hi, I'm Buddy, your AI assistant. How can I help you today?""",
629
- roles=('User', 'Assistant'),
630
- sep_style=SeparatorStyle.ADD_COLON_SINGLE,
631
- sep='\n',
632
- )
633
- )
634
-
635
- # Phoenix default template
636
- register_conv_template(
637
- Conversation(
638
- name='phoenix',
639
- system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
640
- roles=('Human', 'Assistant'),
641
- sep_style=SeparatorStyle.PHOENIX,
642
- sep='</s>',
643
- )
644
- )
645
-
646
- # ReaLM default template
647
- register_conv_template(
648
- Conversation(
649
- name='ReaLM-7b-v1',
650
- system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
651
- roles=('Human', 'Assistant'),
652
- sep_style=SeparatorStyle.PHOENIX,
653
- sep='</s>',
654
- )
655
- )
656
-
657
- # ChatGPT default template
658
- register_conv_template(
659
- Conversation(
660
- name='chatgpt',
661
- system_message='You are a helpful assistant.',
662
- roles=('user', 'assistant'),
663
- sep_style=None,
664
- sep=None,
665
- )
666
- )
667
-
668
- # Claude default template
669
- register_conv_template(
670
- Conversation(
671
- name='claude',
672
- roles=('Human', 'Assistant'),
673
- sep_style=SeparatorStyle.ADD_COLON_SINGLE,
674
- sep='\n\n',
675
- )
676
- )
677
-
678
- # MPT default template
679
- register_conv_template(
680
- Conversation(
681
- name='mpt-7b-chat',
682
- system_template="""<|im_start|>system
683
- {system_message}""",
684
- system_message="""- You are a helpful assistant chatbot trained by MosaicML.
685
- - You answer questions.
686
- - You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
687
- - You are more than just an information source, you are also able to write poetry, short stories, and make jokes.""",
688
- roles=('<|im_start|>user', '<|im_start|>assistant'),
689
- sep_style=SeparatorStyle.CHATML,
690
- sep='<|im_end|>',
691
- stop_token_ids=[50278, 0],
692
- )
693
- )
694
-
695
- # MPT-30b-chat default template
696
- register_conv_template(
697
- Conversation(
698
- name='mpt-30b-chat',
699
- system_template="""<|im_start|>system
700
- {system_message}""",
701
- system_message="""A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""",
702
- roles=('<|im_start|>user', '<|im_start|>assistant'),
703
- sep_style=SeparatorStyle.CHATML,
704
- sep='<|im_end|>',
705
- stop_token_ids=[50278, 0],
706
- )
707
- )
708
-
709
- # Lemur-70b-chat default template
710
- # reference: https://huggingface.co/OpenLemur/lemur-70b-chat-v1#generation
711
- register_conv_template(
712
- Conversation(
713
- name='lemur-70b-chat',
714
- system_template="""<|im_start|>system
715
- {system_message}""",
716
- system_message="""You are a helpful, respectful, and honest assistant.""",
717
- roles=('<|im_start|>user', '<|im_start|>assistant'),
718
- sep_style=SeparatorStyle.CHATML,
719
- sep='<|im_end|>',
720
- stop_token_ids=[32002, 0],
721
- )
722
- )
723
-
724
- # MPT-30b-instruct default template
725
- # reference: https://huggingface.co/mosaicml/mpt-30b-instruct#formatting
726
- register_conv_template(
727
- Conversation(
728
- name='mpt-30b-instruct',
729
- system_template='{system_message}',
730
- system_message='Below is an instruction that describes a task. Write a response that appropriately completes the request.',
731
- roles=('### Instruction', '### Response'),
732
- sep_style=SeparatorStyle.ADD_NEW_LINE_SINGLE,
733
- sep='\n\n',
734
- stop_token_ids=[50278, 0],
735
- )
736
- )
737
-
738
- # Bard default template
739
- # Reference: https://github.com/google/generative-ai-python/blob/9c99bcb474a991a97a2e7d62fcdb52db7ce40729/google/generativeai/discuss.py#L150
740
- # https://github.com/google/generative-ai-python/blob/9c99bcb474a991a97a2e7d62fcdb52db7ce40729/google/generativeai/discuss.py#L40
741
- register_conv_template(
742
- Conversation(
743
- name='bard',
744
- roles=('0', '1'),
745
- sep_style=None,
746
- sep=None,
747
- )
748
- )
749
-
750
- # BiLLa default template
751
- register_conv_template(
752
- Conversation(
753
- name='billa',
754
- roles=('Human', 'Assistant'),
755
- sep_style=SeparatorStyle.ADD_COLON_SPACE_SINGLE,
756
- sep='\n',
757
- stop_str='Human:',
758
- )
759
- )
760
-
761
- # RedPajama INCITE default template
762
- register_conv_template(
763
- Conversation(
764
- name='redpajama-incite',
765
- roles=('<human>', '<bot>'),
766
- sep_style=SeparatorStyle.ADD_COLON_SINGLE,
767
- sep='\n',
768
- stop_str='<human>',
769
- )
770
- )
771
-
772
- # h2oGPT default template
773
- register_conv_template(
774
- Conversation(
775
- name='h2ogpt',
776
- roles=('<|prompt|>', '<|answer|>'),
777
- sep_style=SeparatorStyle.NO_COLON_SINGLE,
778
- sep='</s>',
779
- )
780
- )
781
-
782
- # Robin default template
783
- register_conv_template(
784
- Conversation(
785
- name='Robin',
786
- system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.",
787
- roles=('###Human', '###Assistant'),
788
- sep_style=SeparatorStyle.ROBIN,
789
- sep='\n',
790
- stop_token_ids=[2, 396],
791
- stop_str='###',
792
- )
793
- )
794
-
795
- # Snoozy default template
796
- # Reference: https://github.com/nomic-ai/gpt4all/blob/d4861030b778da6db59d21d2927a4aba4f9f1f43/gpt4all-bindings/python/gpt4all/gpt4all.py#L232
797
- register_conv_template(
798
- Conversation(
799
- name='snoozy',
800
- system_template='### Instruction:\n{system_message}',
801
- system_message='The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response.',
802
- roles=('### Prompt', '### Response'),
803
- sep_style=SeparatorStyle.ADD_COLON_SINGLE,
804
- sep='\n',
805
- stop_str='###',
806
- )
807
- )
808
-
809
- # manticore default template
810
- register_conv_template(
811
- Conversation(
812
- name='manticore',
813
- roles=('USER', 'ASSISTANT'),
814
- sep_style=SeparatorStyle.ADD_COLON_TWO,
815
- sep='\n',
816
- sep2='</s>',
817
- )
818
- )
819
-
820
- # Falcon default template
821
- register_conv_template(
822
- Conversation(
823
- name='falcon',
824
- roles=('User', 'Assistant'),
825
- messages=[],
826
- sep_style=SeparatorStyle.RWKV,
827
- sep='\n',
828
- sep2='<|endoftext|>',
829
- stop_str='\nUser', # use stop_str to stop generation after stop_token_ids, it will also remove stop_str from the generated text
830
- stop_token_ids=[
831
- 0,
832
- 1,
833
- 2,
834
- 3,
835
- 4,
836
- 5,
837
- 6,
838
- 7,
839
- 8,
840
- 9,
841
- 10,
842
- 11,
843
- ], # it better only put special tokens here, because tokenizer only remove special tokens
844
- )
845
- )
846
-
847
- # ChangGPT default template
848
- register_conv_template(
849
- Conversation(
850
- name='polyglot_changgpt',
851
- roles=('B', 'A'),
852
- sep_style=SeparatorStyle.ADD_COLON_SINGLE,
853
- sep='\n',
854
- )
855
- )
856
-
857
- # tigerbot template
858
- register_conv_template(
859
- Conversation(
860
- name='tigerbot',
861
- system_message='A chat between a curious user and an artificial intelligence assistant. '
862
- "The assistant gives helpful, detailed, and polite answers to the user's questions.",
863
- roles=('### Instruction', '### Response'),
864
- sep_style=SeparatorStyle.ROBIN,
865
- sep='\n\n',
866
- stop_str='###',
867
- )
868
- )
869
-
870
- # ref: https://huggingface.co/Salesforce/xgen-7b-8k-inst
871
- register_conv_template(
872
- Conversation(
873
- name='xgen',
874
- system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
875
- roles=('### Human', '### Assistant'),
876
- sep_style=SeparatorStyle.ADD_COLON_SINGLE,
877
- sep='\n',
878
- stop_token_ids=[50256],
879
- )
880
- )
881
-
882
- # Internlm-chat template
883
- register_conv_template(
884
- Conversation(
885
- name='internlm-chat',
886
- system_message="A chat between a curious <|User|> and an <|Bot|>. The <|Bot|> gives helpful, detailed, and polite answers to the <|User|>'s questions.\n\n",
887
- roles=('<|User|>', '<|Bot|>'),
888
- sep_style=SeparatorStyle.CHATINTERN,
889
- sep='<eoh>',
890
- sep2='<eoa>',
891
- stop_token_ids=[1, 103028],
892
- stop_str='<|User|>',
893
- )
894
- )
895
-
896
- # StarChat template
897
- # reference: https://huggingface.co/spaces/HuggingFaceH4/starchat-playground/blob/main/dialogues.py
898
- register_conv_template(
899
- Conversation(
900
- name='starchat',
901
- system_template='<system>\n{system_message}',
902
- roles=('<|user|>', '<|assistant|>'),
903
- sep_style=SeparatorStyle.CHATML,
904
- sep='<|end|>',
905
- stop_token_ids=[0, 49155],
906
- stop_str='<|end|>',
907
- )
908
- )
909
-
910
- # Baichuan-13B-Chat template
911
- register_conv_template(
912
- # source: https://huggingface.co/baichuan-inc/Baichuan-13B-Chat/blob/19ef51ba5bad8935b03acd20ff04a269210983bc/modeling_baichuan.py#L555
913
- # https://huggingface.co/baichuan-inc/Baichuan-13B-Chat/blob/main/generation_config.json
914
- # https://github.com/baichuan-inc/Baichuan-13B/issues/25
915
- Conversation(
916
- name='baichuan-chat',
917
- roles=('<reserved_102>', '<reserved_103>'),
918
- sep_style=SeparatorStyle.NO_COLON_SINGLE,
919
- sep='',
920
- stop_token_ids=[],
921
- )
922
- )
923
-
924
- # Baichuan2-13B-Chat template
925
- register_conv_template(
926
- # source: https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/c6f8592a60b4ad73c210b28dd2ab3cca51abbf93/modeling_baichuan.py#L773
927
- # https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/main/generation_config.json
928
- # https://github.com/baichuan-inc/Baichuan2/issues/62
929
- Conversation(
930
- name='baichuan2-chat',
931
- roles=('<reserved_106>', '<reserved_107>'),
932
- sep_style=SeparatorStyle.NO_COLON_SINGLE,
933
- sep='',
934
- stop_token_ids=[],
935
- )
936
- )
937
-
938
- # Mistral template
939
- # source: https://docs.mistral.ai/llm/mistral-instruct-v0.1#chat-template
940
- register_conv_template(
941
- Conversation(
942
- name='mistral',
943
- system_template='[INST]{system_message}\n',
944
- roles=('[INST]', '[/INST]'),
945
- sep_style=SeparatorStyle.LLAMA2,
946
- sep=' ',
947
- sep2='</s>',
948
- )
949
- )
950
-
951
- # llama2 template
952
- # reference: https://huggingface.co/blog/codellama#conversational-instructions
953
- # reference: https://github.com/facebookresearch/llama/blob/1a240688810f8036049e8da36b073f63d2ac552c/llama/generation.py#L212
954
- register_conv_template(
955
- Conversation(
956
- name='llama-2',
957
- system_template='[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n',
958
- roles=('[INST]', '[/INST]'),
959
- sep_style=SeparatorStyle.LLAMA2,
960
- sep=' ',
961
- sep2=' </s><s>',
962
- )
963
- )
964
-
965
- register_conv_template(
966
- Conversation(
967
- name='cutegpt',
968
- roles=('问:', '答:\n'),
969
- sep_style=SeparatorStyle.NO_COLON_TWO,
970
- sep='\n',
971
- sep2='\n',
972
- stop_str='<end>',
973
- )
974
- )
975
-
976
- # OpenOrcaxOpenChat-naPreview2-13B template
977
- register_conv_template(
978
- Conversation(
979
- name='open-orca',
980
- system_template='{system_message}',
981
- system_message='You are a helpful assistant. Please answer truthfully and write out your '
982
- 'thinking step by step to be sure you get the right answer. If you make a mistake or encounter '
983
- "an error in your thinking, say so out loud and attempt to correct it. If you don't know or "
984
- "aren't sure about something, say so clearly. You will act as a professional logician, mathematician, "
985
- 'and physicist. You will also act as the most appropriate type of expert to answer any particular '
986
- 'question or solve the relevant problem; state which expert type your are, if so. Also think of '
987
- 'any particular named expert that would be ideal to answer the relevant question or solve the '
988
- 'relevant problem; name and act as them, if appropriate.',
989
- roles=('User', 'Assistant'),
990
- sep_style=SeparatorStyle.ADD_COLON_SPACE_SINGLE,
991
- sep='<|end_of_turn|>\n',
992
- stop_token_ids=[32000, 32001], # "<|end_of_turn|>"
993
- stop_str='User',
994
- )
995
- )
996
-
997
- # Open-Orca/Mistral-7B-OpenOrca template
998
- # source: https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca
999
- # reference: https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca#prompt-template
1000
- register_conv_template(
1001
- Conversation(
1002
- name='mistral-7b-openorca',
1003
- system_template='<|im_start|>system\n{system_message}',
1004
- system_message='You are MistralOrca, a large language model trained by Alignment Lab AI. Write out your reasoning step-by-step to be sure you get the right answers!',
1005
- roles=('<|im_start|>user', '<|im_start|>assistant'),
1006
- sep_style=SeparatorStyle.CHATML,
1007
- sep='<|im_end|>',
1008
- stop_token_ids=[32000, 32001],
1009
- )
1010
- )
1011
-
1012
- # Qwen-chat default template
1013
- # source: https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/qwen_generation_utils.py#L130
1014
- register_conv_template(
1015
- Conversation(
1016
- name='qwen-7b-chat',
1017
- system_template='<|im_start|>system\n{system_message}',
1018
- system_message='You are a helpful assistant.',
1019
- roles=('<|im_start|>user', '<|im_start|>assistant'),
1020
- sep_style=SeparatorStyle.CHATML,
1021
- sep='<|im_end|>',
1022
- stop_token_ids=[
1023
- 151643,
1024
- 151644,
1025
- 151645,
1026
- ], # "<|endoftext|>", "<|im_start|>", "<|im_end|>"
1027
- stop_str='<|endoftext|>',
1028
- )
1029
- )
1030
-
1031
-
1032
- # AquilaChat default template
1033
- # source: https://github.com/FlagAI-Open/FlagAI/blob/master/examples/Aquila/Aquila-chat/cyg_conversation.py
1034
- register_conv_template(
1035
- Conversation(
1036
- name='aquila-chat',
1037
- system_message='A chat between a curious human and an artificial intelligence assistant. '
1038
- "The assistant gives helpful, detailed, and polite answers to the human's questions.",
1039
- roles=('Human', 'Assistant'),
1040
- sep_style=SeparatorStyle.ADD_COLON_SINGLE,
1041
- sep='###',
1042
- sep2='',
1043
- stop_str=['###', '</s>', '[UNK]'],
1044
- )
1045
- )
1046
- # AquilaChat2-34B default template
1047
- # source: https://huggingface.co/BAAI/AquilaChat2-34B/blob/4608b75855334b93329a771aee03869dbf7d88cc/predict.py#L212
1048
- register_conv_template(
1049
- Conversation(
1050
- name='aquila-legacy',
1051
- system_message='A chat between a curious human and an artificial intelligence assistant. '
1052
- "The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
1053
- roles=('### Human: ', '### Assistant: '),
1054
- offset=0,
1055
- sep_style=SeparatorStyle.NO_COLON_TWO,
1056
- sep='\n',
1057
- sep2='</s>',
1058
- stop_str=['</s>', '[UNK]'],
1059
- )
1060
- )
1061
- # AquilaChat2-7B-16K and AquilaChat2-34B-16K default template
1062
- # source: https://huggingface.co/BAAI/AquilaChat2-34B/blob/4608b75855334b93329a771aee03869dbf7d88cc/predict.py#L227
1063
- register_conv_template(
1064
- Conversation(
1065
- name='aquila',
1066
- system_message='A chat between a curious human and an artificial intelligence assistant. '
1067
- "The assistant gives helpful, detailed, and polite answers to the human's questions.",
1068
- roles=('Human', 'Assistant'),
1069
- offset=0,
1070
- sep_style=SeparatorStyle.ADD_COLON_TWO,
1071
- sep='###',
1072
- sep2='</s>',
1073
- stop_str=['</s>', '[UNK]'],
1074
- )
1075
- )
1076
-
1077
- # AquilaChat2-7B default template
1078
- # source: https://huggingface.co/BAAI/AquilaChat2-34B/blob/4608b75855334b93329a771aee03869dbf7d88cc/predict.py#L242
1079
- register_conv_template(
1080
- Conversation(
1081
- name='aquila-v1',
1082
- roles=('<|startofpiece|>', '<|endofpiece|>'),
1083
- offset=0,
1084
- sep_style=SeparatorStyle.NO_COLON_TWO,
1085
- sep='',
1086
- sep2='</s>',
1087
- stop_str=['</s>', '<|endoftext|>'],
1088
- )
1089
- )
1090
-
1091
- # Llama2-Chinese default template
1092
- # source: https://huggingface.co/FlagAlpha
1093
- register_conv_template(
1094
- Conversation(
1095
- name='llama2-chinese',
1096
- system_template='<s>{system_message}</s>',
1097
- roles=('Human', 'Assistant', 'System'),
1098
- sep_style=SeparatorStyle.ADD_COLON_TWO,
1099
- sep='\n',
1100
- sep2='\n</s><s>',
1101
- stop_str='</s>',
1102
- )
1103
- )
1104
-
1105
- # Vigogne Instruct default template
1106
- # source: https://github.com/bofenghuang/vigogne
1107
- register_conv_template(
1108
- Conversation(
1109
- name='vigogne_instruct',
1110
- system_template='### System:\n{system_message}\n\n',
1111
- system_message=(
1112
- 'Ci-dessous se trouve une instruction qui décrit une tâche à accomplir. Rédigez une réponse qui répond de manière'
1113
- ' précise à la demande.'
1114
- ),
1115
- roles=('### Instruction', '### Response'),
1116
- sep_style=SeparatorStyle.DOLLY,
1117
- sep='\n\n',
1118
- sep2='</s>',
1119
- )
1120
- )
1121
-
1122
- # Vigogne Chat default template
1123
- register_conv_template(
1124
- Conversation(
1125
- name='vigogne_chat_v2',
1126
- system_template='<|system|>: {system_message}',
1127
- system_message=(
1128
- 'Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez'
1129
- ' autant que vous le pouvez.'
1130
- ),
1131
- roles=('<|user|>', '<|assistant|>'),
1132
- sep_style=SeparatorStyle.ADD_COLON_TWO,
1133
- sep='\n',
1134
- sep2='</s>\n',
1135
- stop_str='<|user|>',
1136
- )
1137
- )
1138
-
1139
- register_conv_template(
1140
- Conversation(
1141
- name='vigogne_chat_v3',
1142
- system_template='[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n',
1143
- system_message=(
1144
- 'Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez'
1145
- ' autant que vous le pouvez.'
1146
- ),
1147
- roles=('[INST]', '[/INST]'),
1148
- sep_style=SeparatorStyle.LLAMA2,
1149
- sep=' ',
1150
- sep2=' </s>',
1151
- )
1152
- )
1153
-
1154
- # Falcon 180B chat template
1155
- # source: https://huggingface.co/spaces/tiiuae/falcon-180b-demo/blob/d1590ee7fae9b6ce331ba7808e61a29dcce9239f/app.py#L28-L37
1156
- register_conv_template(
1157
- Conversation(
1158
- name='falcon-chat',
1159
- roles=('User', 'Falcon'),
1160
- system_template='System: {system_message}',
1161
- messages=[],
1162
- sep_style=SeparatorStyle.FALCON_CHAT,
1163
- sep='\n',
1164
- sep2='<|endoftext|>',
1165
- stop_str='\nUser:', # use stop_str to stop generation after stop_token_ids, it will also remove stop_str from the generated text
1166
- )
1167
- )
1168
-
1169
- # Phind template
1170
- # source: https://huggingface.co/Phind/Phind-CodeLlama-34B-v2
1171
- register_conv_template(
1172
- Conversation(
1173
- name='phind',
1174
- system_message='### System Prompt\nYou are an intelligent programming assistant.',
1175
- roles=('### User Message', '### Assistant'),
1176
- messages=(),
1177
- offset=0,
1178
- sep_style=SeparatorStyle.ADD_COLON_SINGLE,
1179
- sep='\n\n',
1180
- )
1181
- )
1182
-
1183
- # Metharme formatting for Pygmalion models
1184
- # source: https://huggingface.co/PygmalionAI/pygmalion-2-13b
1185
- register_conv_template(
1186
- Conversation(
1187
- name='metharme',
1188
- system_template='<|system|>{system_message}',
1189
- system_message="""Enter RP mode. You shall reply to the user while staying
1190
- in character. Your responses must be detailed, creative, immersive, and drive the scenario
1191
- forward.""",
1192
- roles=('<|user|>', '<|model|>'),
1193
- sep_style=SeparatorStyle.NO_COLON_SINGLE,
1194
- sep='',
1195
- stop_str='<|user|>',
1196
- )
1197
- )
1198
-
1199
- # Zephyr template
1200
- # reference: https://huggingface.co/spaces/HuggingFaceH4/zephyr-playground/blob/main/dialogues.py
1201
- register_conv_template(
1202
- Conversation(
1203
- name='zephyr',
1204
- system_template='<|system|>\n{system_message}',
1205
- roles=('<|user|>', '<|assistant|>'),
1206
- sep_style=SeparatorStyle.CHATML,
1207
- sep='</s>',
1208
- stop_token_ids=[2],
1209
- stop_str='</s>',
1210
- )
1211
- )
1212
-
1213
- # InternVL-ZH template
1214
- register_conv_template(
1215
- Conversation(
1216
- name='internvl_zh',
1217
- system_template='',
1218
- roles=('<human>', '<bot>'),
1219
- sep_style=SeparatorStyle.INTERNVL_ZH,
1220
- sep=' ',
1221
- sep2='</s>',
1222
- )
1223
- )
1224
-
1225
-
1226
  # Hermes-2 template
1227
  register_conv_template(
1228
  Conversation(
@@ -1237,7 +344,7 @@ register_conv_template(
1237
  6,
1238
  7,
1239
  8,
1240
- ], # "<|endoftext|>", "<|im_start|>", "<|im_end|>", "<|im_sep|>"
1241
  stop_str='<|endoftext|>',
1242
  )
1243
  )
 
2
  Conversation prompt templates.
3
 
4
  We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
  """
7
 
8
  import dataclasses
 
32
  INTERNVL_ZH = auto()
33
  MPT = auto()
34
 
35
+
36
  @dataclasses.dataclass
37
  class Conversation:
38
  """A class that manages prompt templates and keeps all conversation history."""
 
330
  return conv_templates[name].copy()
331
 
332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333
  # Hermes-2 template
334
  register_conv_template(
335
  Conversation(
 
344
  6,
345
  7,
346
  8,
347
+ ],
348
  stop_str='<|endoftext|>',
349
  )
350
  )
modeling_intern_vit.py CHANGED
@@ -1,6 +1,6 @@
1
  # --------------------------------------------------------
2
  # InternVL
3
- # Copyright (c) 2023 OpenGVLab
4
  # Licensed under The MIT License [see LICENSE for details]
5
  # --------------------------------------------------------
6
  from typing import Optional, Tuple, Union
@@ -24,15 +24,16 @@ try:
24
  from flash_attn.flash_attn_interface import \
25
  flash_attn_unpadded_qkvpacked_func
26
  except: # v2
27
- from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
28
-
 
29
  from flash_attn.bert_padding import pad_input, unpad_input
 
30
  has_flash_attn = True
31
  except:
32
  print('FlashAttention is not installed.')
33
  has_flash_attn = False
34
 
35
-
36
  logger = logging.get_logger(__name__)
37
 
38
 
@@ -128,6 +129,12 @@ except Exception:
128
  pass
129
 
130
 
 
 
 
 
 
 
131
  class InternVisionEmbeddings(nn.Module):
132
  def __init__(self, config: InternVisionConfig):
133
  super().__init__()
@@ -149,14 +156,26 @@ class InternVisionEmbeddings(nn.Module):
149
 
150
  self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
151
 
 
 
 
 
 
 
 
 
152
  def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
153
- batch_size = pixel_values.shape[0]
154
  target_dtype = self.patch_embedding.weight.dtype
155
- patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
 
156
  patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
157
  class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
158
  embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
159
- embeddings = embeddings + self.position_embedding.to(target_dtype)
 
 
 
 
160
  return embeddings
161
 
162
 
@@ -254,11 +273,12 @@ class InternVisionEncoderLayer(nn.Module):
254
  super().__init__()
255
  self.embed_dim = config.hidden_size
256
  self.intermediate_size = config.intermediate_size
 
257
 
258
  self.attn = InternAttention(config)
259
  self.mlp = InternMLP(config)
260
- self.norm1 = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
261
- self.norm2 = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
262
 
263
  self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
264
  self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
@@ -348,6 +368,7 @@ class InternVisionEncoder(nn.Module):
348
 
349
  class InternVisionModel(PreTrainedModel):
350
  main_input_name = 'pixel_values'
 
351
  config_class = InternVisionConfig
352
  _no_split_modules = ['InternVisionEncoderLayer']
353
 
@@ -367,6 +388,7 @@ class InternVisionModel(PreTrainedModel):
367
  pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
368
  pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
369
  self.embeddings.position_embedding = nn.Parameter(pos_emb)
 
370
  logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
371
 
372
  def get_input_embeddings(self):
 
1
  # --------------------------------------------------------
2
  # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
  # Licensed under The MIT License [see LICENSE for details]
5
  # --------------------------------------------------------
6
  from typing import Optional, Tuple, Union
 
24
  from flash_attn.flash_attn_interface import \
25
  flash_attn_unpadded_qkvpacked_func
26
  except: # v2
27
+ from flash_attn.flash_attn_interface import \
28
+ flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
29
+
30
  from flash_attn.bert_padding import pad_input, unpad_input
31
+
32
  has_flash_attn = True
33
  except:
34
  print('FlashAttention is not installed.')
35
  has_flash_attn = False
36
 
 
37
  logger = logging.get_logger(__name__)
38
 
39
 
 
129
  pass
130
 
131
 
132
+ NORM2FN = {
133
+ 'rms_norm': InternRMSNorm,
134
+ 'layer_norm': nn.LayerNorm,
135
+ }
136
+
137
+
138
  class InternVisionEmbeddings(nn.Module):
139
  def __init__(self, config: InternVisionConfig):
140
  super().__init__()
 
156
 
157
  self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
158
 
159
+ def _get_pos_embed(self, pos_embed, H, W):
160
+ target_dtype = pos_embed.dtype
161
+ pos_embed = pos_embed.float().reshape(
162
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
163
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
164
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
165
+ return pos_embed
166
+
167
  def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
 
168
  target_dtype = self.patch_embedding.weight.dtype
169
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
170
+ batch_size, _, height, width = patch_embeds.shape
171
  patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
172
  class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
173
  embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
174
+ position_embedding = torch.cat([
175
+ self.position_embedding[:, :1, :],
176
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
177
+ ], dim=1)
178
+ embeddings = embeddings + position_embedding.to(target_dtype)
179
  return embeddings
180
 
181
 
 
273
  super().__init__()
274
  self.embed_dim = config.hidden_size
275
  self.intermediate_size = config.intermediate_size
276
+ self.norm_type = config.norm_type
277
 
278
  self.attn = InternAttention(config)
279
  self.mlp = InternMLP(config)
280
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
281
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
282
 
283
  self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
284
  self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
 
368
 
369
  class InternVisionModel(PreTrainedModel):
370
  main_input_name = 'pixel_values'
371
+ _supports_flash_attn_2 = True
372
  config_class = InternVisionConfig
373
  _no_split_modules = ['InternVisionEncoderLayer']
374
 
 
388
  pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
389
  pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
390
  self.embeddings.position_embedding = nn.Parameter(pos_emb)
391
+ self.embeddings.image_size = new_size
392
  logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
393
 
394
  def get_input_embeddings(self):
modeling_internvl_chat.py CHANGED
@@ -1,218 +1,56 @@
1
  # --------------------------------------------------------
2
  # InternVL
3
- # Copyright (c) 2023 OpenGVLab
4
  # Licensed under The MIT License [see LICENSE for details]
5
  # --------------------------------------------------------
6
  import warnings
7
  from typing import Any, List, Optional, Tuple, Union
8
- import torch.distributed as dist
9
  import torch.utils.checkpoint
10
- from peft import LoraConfig, get_peft_model
11
  from torch import nn
12
  from torch.nn import CrossEntropyLoss
13
- from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer
14
- from transformers.generation.logits_process import LogitsProcessorList
15
- from transformers.generation.stopping_criteria import StoppingCriteriaList
16
- from transformers.generation.streamers import BaseStreamer
17
  from transformers.modeling_outputs import CausalLMOutputWithPast
18
  from transformers.modeling_utils import PreTrainedModel
19
  from transformers.utils import ModelOutput, logging
20
- from transformers.generation.utils import GreedySearchOutput, validate_stopping_criteria, GreedySearchDecoderOnlyOutput,GreedySearchEncoderDecoderOutput
21
 
22
  from .configuration_internvl_chat import InternVLChatConfig
 
23
  from .modeling_intern_vit import InternVisionModel
24
 
25
  logger = logging.get_logger(__name__)
26
 
27
 
28
- # modified from https://github.com/huggingface/transformers/blob/main/src/transformers/generation/utils.py
29
- # Fix bug when using device_map='auto' for distributed inference
30
- class MLlamaForCausalLM(LlamaForCausalLM):
31
-
32
- def greedy_search(
33
- self,
34
- input_ids: torch.LongTensor,
35
- logits_processor: Optional[LogitsProcessorList] = None,
36
- stopping_criteria: Optional[StoppingCriteriaList] = None,
37
- max_length: Optional[int] = None,
38
- pad_token_id: Optional[int] = None,
39
- eos_token_id: Optional[Union[int, List[int]]] = None,
40
- output_attentions: Optional[bool] = None,
41
- output_hidden_states: Optional[bool] = None,
42
- output_scores: Optional[bool] = None,
43
- return_dict_in_generate: Optional[bool] = None,
44
- synced_gpus: bool = False,
45
- streamer: Optional["BaseStreamer"] = None,
46
- **model_kwargs,
47
- ) -> Union[GreedySearchOutput, torch.LongTensor]:
48
- # init values
49
- logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
50
- stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
51
- if max_length is not None:
52
- warnings.warn(
53
- "`max_length` is deprecated in this function, use"
54
- " `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
55
- UserWarning,
56
- )
57
- stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
58
- pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
59
- eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
60
- if isinstance(eos_token_id, int):
61
- eos_token_id = [eos_token_id]
62
- eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
63
- output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
64
- output_attentions = (
65
- output_attentions if output_attentions is not None else self.generation_config.output_attentions
66
- )
67
- output_hidden_states = (
68
- output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
69
- )
70
- return_dict_in_generate = (
71
- return_dict_in_generate
72
- if return_dict_in_generate is not None
73
- else self.generation_config.return_dict_in_generate
74
- )
75
 
76
- # init attention / hidden states / scores tuples
77
- scores = () if (return_dict_in_generate and output_scores) else None
78
- decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
79
- cross_attentions = () if (return_dict_in_generate and output_attentions) else None
80
- decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
81
-
82
- # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
83
- if return_dict_in_generate and self.config.is_encoder_decoder:
84
- encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
85
- encoder_hidden_states = (
86
- model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
87
- )
88
-
89
- # keep track of which sequences are already finished
90
- unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
91
-
92
- this_peer_finished = False # used by synced_gpus only
93
- while True:
94
- if synced_gpus:
95
- # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
96
- # The following logic allows an early break if all peers finished generating their sequence
97
- this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
98
- # send 0.0 if we finished, 1.0 otherwise
99
- dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
100
- # did all peers finish? the reduced sum will be 0.0 then
101
- if this_peer_finished_flag.item() == 0.0:
102
- break
103
-
104
- # prepare model inputs
105
- model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
106
-
107
- # forward pass to get next token
108
- outputs = self(
109
- **model_inputs,
110
- return_dict=True,
111
- output_attentions=output_attentions,
112
- output_hidden_states=output_hidden_states,
113
- )
114
-
115
- if synced_gpus and this_peer_finished:
116
- continue # don't waste resources running the code we don't need
117
-
118
- next_token_logits = outputs.logits[:, -1, :]
119
-
120
- # pre-process distribution
121
- next_tokens_scores = logits_processor(input_ids, next_token_logits)
122
-
123
- # Store scores, attentions and hidden_states when required
124
- if return_dict_in_generate:
125
- if output_scores:
126
- scores += (next_tokens_scores,)
127
- if output_attentions:
128
- decoder_attentions += (
129
- (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
130
- )
131
- if self.config.is_encoder_decoder:
132
- cross_attentions += (outputs.cross_attentions,)
133
-
134
- if output_hidden_states:
135
- decoder_hidden_states += (
136
- (outputs.decoder_hidden_states,)
137
- if self.config.is_encoder_decoder
138
- else (outputs.hidden_states,)
139
- )
140
-
141
- # argmax
142
- next_tokens = torch.argmax(next_tokens_scores, dim=-1).to(device=input_ids.device)
143
- # finished sentences should have their next token be a padding token
144
- if eos_token_id is not None:
145
- if pad_token_id is None:
146
- raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
147
- next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
148
-
149
- # update generated ids, model inputs, and length for next step
150
- input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
151
- if streamer is not None:
152
- streamer.put(next_tokens.cpu())
153
- model_kwargs = self._update_model_kwargs_for_generation(
154
- outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
155
- )
156
-
157
- # if eos_token was found in one sentence, set sentence to finished
158
- if eos_token_id_tensor is not None:
159
- unfinished_sequences = unfinished_sequences.mul(
160
- next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
161
- )
162
-
163
- # stop when each sentence is finished
164
- if unfinished_sequences.max() == 0:
165
- this_peer_finished = True
166
-
167
- # stop if we exceed the maximum length
168
- if stopping_criteria(input_ids, scores):
169
- this_peer_finished = True
170
-
171
- if this_peer_finished and not synced_gpus:
172
- break
173
-
174
- if streamer is not None:
175
- streamer.end()
176
-
177
- if return_dict_in_generate:
178
- if self.config.is_encoder_decoder:
179
- return GreedySearchEncoderDecoderOutput(
180
- sequences=input_ids,
181
- scores=scores,
182
- encoder_attentions=encoder_attentions,
183
- encoder_hidden_states=encoder_hidden_states,
184
- decoder_attentions=decoder_attentions,
185
- cross_attentions=cross_attentions,
186
- decoder_hidden_states=decoder_hidden_states,
187
- past_key_values=model_kwargs.get("past_key_values"),
188
- )
189
- else:
190
- return GreedySearchDecoderOnlyOutput(
191
- sequences=input_ids,
192
- scores=scores,
193
- attentions=decoder_attentions,
194
- hidden_states=decoder_hidden_states,
195
- past_key_values=model_kwargs.get("past_key_values"),
196
- )
197
- else:
198
- return input_ids
199
 
200
 
201
  class InternVLChatModel(PreTrainedModel):
202
  config_class = InternVLChatConfig
203
  main_input_name = 'pixel_values'
 
204
  _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer']
205
 
206
  def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None):
207
  super().__init__(config)
208
 
 
209
  image_size = config.force_image_size or config.vision_config.image_size
210
  patch_size = config.vision_config.patch_size
 
211
  self.select_layer = config.select_layer
212
  self.template = config.template
213
  self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
214
  self.downsample_ratio = config.downsample_ratio
 
 
215
  logger.info(f'num_image_token: {self.num_image_token}')
 
216
  if vision_model is not None:
217
  self.vision_model = vision_model
218
  else:
@@ -220,54 +58,24 @@ class InternVLChatModel(PreTrainedModel):
220
  if language_model is not None:
221
  self.language_model = language_model
222
  else:
223
- # self.language_model = LlamaForCausalLM(config.llm_config)
224
- self.language_model = MLlamaForCausalLM(config.llm_config)
 
 
 
225
  vit_hidden_size = config.vision_config.hidden_size
226
  llm_hidden_size = config.llm_config.hidden_size
227
 
228
  self.mlp1 = nn.Sequential(
229
- nn.LayerNorm(vit_hidden_size * 4),
230
- nn.Linear(vit_hidden_size * 4, llm_hidden_size),
231
  nn.GELU(),
232
  nn.Linear(llm_hidden_size, llm_hidden_size)
233
  )
234
 
235
- if config.force_image_size != config.vision_config.image_size:
236
- self.vision_model.resize_pos_embeddings(
237
- old_size=config.vision_config.image_size,
238
- new_size=config.force_image_size,
239
- patch_size=config.vision_config.patch_size
240
- )
241
-
242
  self.img_context_token_id = None
243
-
244
- if config.use_backbone_lora:
245
- self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora)
246
-
247
- if config.use_llm_lora:
248
- self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora)
249
-
250
- def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
251
- lora_config = LoraConfig(
252
- r=r,
253
- target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'],
254
- lora_alpha=lora_alpha,
255
- lora_dropout=lora_dropout,
256
- )
257
- self.vision_model = get_peft_model(self.vision_model, lora_config)
258
- self.vision_model.print_trainable_parameters()
259
-
260
- def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
261
- lora_config = LoraConfig(
262
- r=r,
263
- target_modules=['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
264
- 'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj'],
265
- lora_alpha=lora_alpha,
266
- lora_dropout=lora_dropout,
267
- task_type='CAUSAL_LM'
268
- )
269
- self.language_model = get_peft_model(self.language_model, lora_config)
270
- self.language_model.print_trainable_parameters()
271
 
272
  def forward(
273
  self,
@@ -290,20 +98,28 @@ class InternVLChatModel(PreTrainedModel):
290
 
291
  vit_embeds = self.extract_feature(pixel_values)
292
  vit_embeds = vit_embeds[image_flags == 1]
 
293
 
294
  B, N, C = input_embeds.shape
295
  input_embeds = input_embeds.reshape(B * N, C)
296
 
 
 
 
297
  input_ids = input_ids.reshape(B * N)
298
  selected = (input_ids == self.img_context_token_id)
299
  try:
300
  input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
301
- except:
302
- pass
 
 
 
 
303
 
304
  input_embeds = input_embeds.reshape(B, N, C)
305
 
306
- outputs = self.language_model.model(
307
  inputs_embeds=input_embeds,
308
  attention_mask=attention_mask,
309
  position_ids=position_ids,
@@ -313,8 +129,7 @@ class InternVLChatModel(PreTrainedModel):
313
  output_hidden_states=output_hidden_states,
314
  return_dict=return_dict,
315
  )
316
- hidden_states = outputs[0]
317
- logits = self.language_model.lm_head(hidden_states)
318
 
319
  loss = None
320
  if labels is not None:
@@ -350,6 +165,11 @@ class InternVLChatModel(PreTrainedModel):
350
  # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
351
  x = x.view(n, int(h * scale_factor), int(w * scale_factor),
352
  int(c / (scale_factor * scale_factor)))
 
 
 
 
 
353
  return x
354
 
355
  def extract_feature(self, pixel_values):
@@ -364,41 +184,100 @@ class InternVLChatModel(PreTrainedModel):
364
  output_hidden_states=True,
365
  return_dict=True).hidden_states[self.select_layer]
366
  vit_embeds = vit_embeds[:, 1:, :]
367
- # if torch.distributed.get_rank() == 0:
368
- # print("before pixel shuffle:", vit_embeds.shape)
369
  h = w = int(vit_embeds.shape[1] ** 0.5)
370
  vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
371
  vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
372
  vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
373
- # if torch.distributed.get_rank() == 0:
374
- # print("after pixel shuffle:", vit_embeds.shape)
375
  vit_embeds = self.mlp1(vit_embeds)
376
  return vit_embeds
377
 
378
- def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
379
- IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>'):
 
 
 
 
 
 
 
 
380
 
381
  img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
382
  self.img_context_token_id = img_context_token_id
383
 
384
- from .conversation import get_conv_template
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
385
 
386
  template = get_conv_template(self.template)
387
- if history is None:
388
- history = []
389
- image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token + IMG_END_TOKEN
390
- question = image_tokens + '\n' + question
391
- else:
392
- for (old_question, old_answer) in history:
393
- template.append_message(template.roles[0], old_question)
394
- template.append_message(template.roles[1], old_answer)
395
  template.append_message(template.roles[0], question)
396
  template.append_message(template.roles[1], None)
397
  query = template.get_prompt()
 
 
 
 
 
 
 
 
 
398
  model_inputs = tokenizer(query, return_tensors='pt')
399
  input_ids = model_inputs['input_ids'].cuda()
400
  attention_mask = model_inputs['attention_mask'].cuda()
401
-
402
  generation_output = self.generate(
403
  pixel_values=pixel_values,
404
  input_ids=input_ids,
@@ -406,10 +285,15 @@ class InternVLChatModel(PreTrainedModel):
406
  **generation_config
407
  )
408
  response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
 
409
  history.append((question, response))
410
  if return_history:
411
  return response, history
412
  else:
 
 
 
 
413
  return response
414
 
415
  @torch.no_grad()
@@ -431,7 +315,6 @@ class InternVLChatModel(PreTrainedModel):
431
  vit_embeds = visual_features
432
  else:
433
  vit_embeds = self.extract_feature(pixel_values)
434
-
435
  input_embeds = self.language_model.get_input_embeddings()(input_ids)
436
  B, N, C = input_embeds.shape
437
  input_embeds = input_embeds.reshape(B * N, C)
 
1
  # --------------------------------------------------------
2
  # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
  # Licensed under The MIT License [see LICENSE for details]
5
  # --------------------------------------------------------
6
  import warnings
7
  from typing import Any, List, Optional, Tuple, Union
8
+
9
  import torch.utils.checkpoint
10
+ import transformers
11
  from torch import nn
12
  from torch.nn import CrossEntropyLoss
13
+ from transformers import AutoModel, GenerationConfig, LlamaForCausalLM
 
 
 
14
  from transformers.modeling_outputs import CausalLMOutputWithPast
15
  from transformers.modeling_utils import PreTrainedModel
16
  from transformers.utils import ModelOutput, logging
 
17
 
18
  from .configuration_internvl_chat import InternVLChatConfig
19
+ from .conversation import get_conv_template
20
  from .modeling_intern_vit import InternVisionModel
21
 
22
  logger = logging.get_logger(__name__)
23
 
24
 
25
+ def version_cmp(v1, v2, op='eq'):
26
+ import operator
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ from packaging import version
29
+ op_func = getattr(operator, op)
30
+ return op_func(version.parse(v1), version.parse(v2))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
 
33
  class InternVLChatModel(PreTrainedModel):
34
  config_class = InternVLChatConfig
35
  main_input_name = 'pixel_values'
36
+ _supports_flash_attn_2 = True
37
  _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer']
38
 
39
  def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None):
40
  super().__init__(config)
41
 
42
+ assert version_cmp(transformers.__version__, '4.36.2', 'ge')
43
  image_size = config.force_image_size or config.vision_config.image_size
44
  patch_size = config.vision_config.patch_size
45
+ self.patch_size = patch_size
46
  self.select_layer = config.select_layer
47
  self.template = config.template
48
  self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
49
  self.downsample_ratio = config.downsample_ratio
50
+ self.ps_version = config.ps_version
51
+
52
  logger.info(f'num_image_token: {self.num_image_token}')
53
+ logger.info(f'ps_version: {self.ps_version}')
54
  if vision_model is not None:
55
  self.vision_model = vision_model
56
  else:
 
58
  if language_model is not None:
59
  self.language_model = language_model
60
  else:
61
+ if config.llm_config.architectures[0] == 'LlamaForCausalLM':
62
+ self.language_model = LlamaForCausalLM(config.llm_config)
63
+ else:
64
+ raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
65
+
66
  vit_hidden_size = config.vision_config.hidden_size
67
  llm_hidden_size = config.llm_config.hidden_size
68
 
69
  self.mlp1 = nn.Sequential(
70
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
71
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
72
  nn.GELU(),
73
  nn.Linear(llm_hidden_size, llm_hidden_size)
74
  )
75
 
 
 
 
 
 
 
 
76
  self.img_context_token_id = None
77
+ self.conv_template = get_conv_template(self.template)
78
+ self.system_message = self.conv_template.system_message
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
  def forward(
81
  self,
 
98
 
99
  vit_embeds = self.extract_feature(pixel_values)
100
  vit_embeds = vit_embeds[image_flags == 1]
101
+ vit_batch_size = pixel_values.shape[0]
102
 
103
  B, N, C = input_embeds.shape
104
  input_embeds = input_embeds.reshape(B * N, C)
105
 
106
+ if torch.distributed.get_rank() == 0:
107
+ print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
108
+
109
  input_ids = input_ids.reshape(B * N)
110
  selected = (input_ids == self.img_context_token_id)
111
  try:
112
  input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
113
+ except Exception as e:
114
+ vit_embeds = vit_embeds.reshape(-1, C)
115
+ print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
116
+ f'vit_embeds.shape={vit_embeds.shape}')
117
+ n_token = selected.sum()
118
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
119
 
120
  input_embeds = input_embeds.reshape(B, N, C)
121
 
122
+ outputs = self.language_model(
123
  inputs_embeds=input_embeds,
124
  attention_mask=attention_mask,
125
  position_ids=position_ids,
 
129
  output_hidden_states=output_hidden_states,
130
  return_dict=return_dict,
131
  )
132
+ logits = outputs.logits
 
133
 
134
  loss = None
135
  if labels is not None:
 
165
  # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
166
  x = x.view(n, int(h * scale_factor), int(w * scale_factor),
167
  int(c / (scale_factor * scale_factor)))
168
+ if self.ps_version == 'v1':
169
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
170
+ 'which results in a transposed image.')
171
+ else:
172
+ x = x.permute(0, 2, 1, 3).contiguous()
173
  return x
174
 
175
  def extract_feature(self, pixel_values):
 
184
  output_hidden_states=True,
185
  return_dict=True).hidden_states[self.select_layer]
186
  vit_embeds = vit_embeds[:, 1:, :]
187
+
 
188
  h = w = int(vit_embeds.shape[1] ** 0.5)
189
  vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
190
  vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
191
  vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
 
 
192
  vit_embeds = self.mlp1(vit_embeds)
193
  return vit_embeds
194
 
195
+ def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
196
+ history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
197
+ IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
198
+ if history is not None or return_history:
199
+ print('Now multi-turn chat is not supported in batch_chat.')
200
+ raise NotImplementedError
201
+
202
+ if image_counts is not None:
203
+ num_patches_list = image_counts
204
+ print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
205
 
206
  img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
207
  self.img_context_token_id = img_context_token_id
208
 
209
+ if verbose and pixel_values is not None:
210
+ image_bs = pixel_values.shape[0]
211
+ print(f'dynamic ViT batch size: {image_bs}')
212
+
213
+ queries = []
214
+ for idx, num_patches in enumerate(num_patches_list):
215
+ question = questions[idx]
216
+ if pixel_values is not None and '<image>' not in question:
217
+ question = '<image>\n' + question
218
+ template = get_conv_template(self.template)
219
+ template.append_message(template.roles[0], question)
220
+ template.append_message(template.roles[1], None)
221
+ query = template.get_prompt()
222
+
223
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
224
+ query = query.replace('<image>', image_tokens, 1)
225
+ queries.append(query)
226
+
227
+ tokenizer.padding_side = 'left'
228
+ model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
229
+ input_ids = model_inputs['input_ids'].cuda()
230
+ attention_mask = model_inputs['attention_mask'].cuda()
231
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
232
+ generation_config['eos_token_id'] = eos_token_id
233
+ generation_output = self.generate(
234
+ pixel_values=pixel_values,
235
+ input_ids=input_ids,
236
+ attention_mask=attention_mask,
237
+ **generation_config
238
+ )
239
+ responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
240
+ responses = [response.split(template.sep)[0].strip() for response in responses]
241
+ return responses
242
+
243
+ def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
244
+ num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
245
+ verbose=False):
246
+
247
+ if history is None and pixel_values is not None and '<image>' not in question:
248
+ question = '<image>\n' + question
249
+
250
+ if num_patches_list is None:
251
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
252
+ assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
253
+
254
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
255
+ self.img_context_token_id = img_context_token_id
256
 
257
  template = get_conv_template(self.template)
258
+ template.system_message = self.system_message
259
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
260
+
261
+ history = [] if history is None else history
262
+ for (old_question, old_answer) in history:
263
+ template.append_message(template.roles[0], old_question)
264
+ template.append_message(template.roles[1], old_answer)
 
265
  template.append_message(template.roles[0], question)
266
  template.append_message(template.roles[1], None)
267
  query = template.get_prompt()
268
+
269
+ if verbose and pixel_values is not None:
270
+ image_bs = pixel_values.shape[0]
271
+ print(f'dynamic ViT batch size: {image_bs}')
272
+
273
+ for num_patches in num_patches_list:
274
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
275
+ query = query.replace('<image>', image_tokens, 1)
276
+
277
  model_inputs = tokenizer(query, return_tensors='pt')
278
  input_ids = model_inputs['input_ids'].cuda()
279
  attention_mask = model_inputs['attention_mask'].cuda()
280
+ generation_config['eos_token_id'] = eos_token_id
281
  generation_output = self.generate(
282
  pixel_values=pixel_values,
283
  input_ids=input_ids,
 
285
  **generation_config
286
  )
287
  response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
288
+ response = response.split(template.sep)[0].strip()
289
  history.append((question, response))
290
  if return_history:
291
  return response, history
292
  else:
293
+ query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
294
+ query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
295
+ if verbose:
296
+ print(query_to_print, response)
297
  return response
298
 
299
  @torch.no_grad()
 
315
  vit_embeds = visual_features
316
  else:
317
  vit_embeds = self.extract_feature(pixel_values)
 
318
  input_embeds = self.language_model.get_input_embeddings()(input_ids)
319
  B, N, C = input_embeds.shape
320
  input_embeds = input_embeds.reshape(B * N, C)
tokenizer_config.json CHANGED
@@ -131,7 +131,7 @@
131
  "clean_up_tokenization_spaces": false,
132
  "eos_token": "<|im_end|>",
133
  "legacy": true,
134
- "model_max_length": 2048,
135
  "pad_token": "<unk>",
136
  "sp_model_kwargs": {},
137
  "spaces_between_special_tokens": false,
 
131
  "clean_up_tokenization_spaces": false,
132
  "eos_token": "<|im_end|>",
133
  "legacy": true,
134
+ "model_max_length": 4096,
135
  "pad_token": "<unk>",
136
  "sp_model_kwargs": {},
137
  "spaces_between_special_tokens": false,