Update README.md
Browse files
README.md
CHANGED
@@ -101,12 +101,19 @@ from transformers import AutoModel, CLIPImageProcessor
|
|
101 |
from transformers import AutoTokenizer
|
102 |
|
103 |
path = "OpenGVLab/InternVL-Chat-Chinese-V1-2"
|
|
|
104 |
model = AutoModel.from_pretrained(
|
105 |
path,
|
106 |
torch_dtype=torch.bfloat16,
|
107 |
low_cpu_mem_usage=True,
|
108 |
-
trust_remote_code=True
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
tokenizer = AutoTokenizer.from_pretrained(path)
|
112 |
image = Image.open('./examples/image2.jpg').convert('RGB')
|
|
|
101 |
from transformers import AutoTokenizer
|
102 |
|
103 |
path = "OpenGVLab/InternVL-Chat-Chinese-V1-2"
|
104 |
+
# If you have an 80G A100 GPU, you can put the entire model on a single GPU.
|
105 |
model = AutoModel.from_pretrained(
|
106 |
path,
|
107 |
torch_dtype=torch.bfloat16,
|
108 |
low_cpu_mem_usage=True,
|
109 |
+
trust_remote_code=True).eval().cuda()
|
110 |
+
# Otherwise, you need to set device_map='auto' to use multiple GPUs for inference.
|
111 |
+
# model = AutoModel.from_pretrained(
|
112 |
+
# path,
|
113 |
+
# torch_dtype=torch.bfloat16,
|
114 |
+
# low_cpu_mem_usage=True,
|
115 |
+
# trust_remote_code=True,
|
116 |
+
# device_map='auto').eval()
|
117 |
|
118 |
tokenizer = AutoTokenizer.from_pretrained(path)
|
119 |
image = Image.open('./examples/image2.jpg').convert('RGB')
|