1_5e-3_1_0.9
This model is a fine-tuned version of bert-large-uncased on the super_glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.2534
- Accuracy: 0.7483
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 16
- eval_batch_size: 8
- seed: 11
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.959 | 1.0 | 590 | 0.8539 | 0.6217 |
0.7269 | 2.0 | 1180 | 0.5087 | 0.6211 |
0.7153 | 3.0 | 1770 | 0.6070 | 0.4086 |
0.6861 | 4.0 | 2360 | 0.7139 | 0.6217 |
0.6453 | 5.0 | 2950 | 0.4409 | 0.6584 |
0.5962 | 6.0 | 3540 | 0.4496 | 0.5887 |
0.5361 | 7.0 | 4130 | 0.5527 | 0.5122 |
0.5468 | 8.0 | 4720 | 0.3969 | 0.6850 |
0.4902 | 9.0 | 5310 | 0.3556 | 0.6878 |
0.4794 | 10.0 | 5900 | 0.4762 | 0.6657 |
0.4719 | 11.0 | 6490 | 0.3936 | 0.6450 |
0.4317 | 12.0 | 7080 | 0.3662 | 0.7037 |
0.4179 | 13.0 | 7670 | 0.3144 | 0.6884 |
0.3817 | 14.0 | 8260 | 0.3086 | 0.7061 |
0.3867 | 15.0 | 8850 | 0.3868 | 0.7131 |
0.3573 | 16.0 | 9440 | 0.3145 | 0.7156 |
0.3413 | 17.0 | 10030 | 0.3493 | 0.6667 |
0.3458 | 18.0 | 10620 | 0.3274 | 0.6758 |
0.3212 | 19.0 | 11210 | 0.2809 | 0.7211 |
0.3182 | 20.0 | 11800 | 0.3024 | 0.7294 |
0.2971 | 21.0 | 12390 | 0.2963 | 0.6991 |
0.297 | 22.0 | 12980 | 0.2757 | 0.7089 |
0.276 | 23.0 | 13570 | 0.2705 | 0.7245 |
0.2741 | 24.0 | 14160 | 0.2971 | 0.6924 |
0.2651 | 25.0 | 14750 | 0.3400 | 0.7327 |
0.2635 | 26.0 | 15340 | 0.3080 | 0.6859 |
0.2578 | 27.0 | 15930 | 0.2861 | 0.7083 |
0.2479 | 28.0 | 16520 | 0.2751 | 0.7398 |
0.2466 | 29.0 | 17110 | 0.2798 | 0.7385 |
0.2461 | 30.0 | 17700 | 0.2627 | 0.7266 |
0.2355 | 31.0 | 18290 | 0.3146 | 0.7309 |
0.2315 | 32.0 | 18880 | 0.4802 | 0.7159 |
0.2258 | 33.0 | 19470 | 0.2626 | 0.7327 |
0.2192 | 34.0 | 20060 | 0.2806 | 0.7385 |
0.2217 | 35.0 | 20650 | 0.2837 | 0.7040 |
0.2126 | 36.0 | 21240 | 0.2950 | 0.7434 |
0.21 | 37.0 | 21830 | 0.3081 | 0.7419 |
0.2086 | 38.0 | 22420 | 0.2490 | 0.7343 |
0.2071 | 39.0 | 23010 | 0.2674 | 0.7437 |
0.2052 | 40.0 | 23600 | 0.3063 | 0.7413 |
0.2027 | 41.0 | 24190 | 0.2926 | 0.7410 |
0.2035 | 42.0 | 24780 | 0.2712 | 0.7398 |
0.1945 | 43.0 | 25370 | 0.2639 | 0.7367 |
0.1988 | 44.0 | 25960 | 0.2570 | 0.7370 |
0.1909 | 45.0 | 26550 | 0.2635 | 0.7361 |
0.1891 | 46.0 | 27140 | 0.2565 | 0.7358 |
0.1878 | 47.0 | 27730 | 0.2588 | 0.7367 |
0.1861 | 48.0 | 28320 | 0.2511 | 0.7294 |
0.1932 | 49.0 | 28910 | 0.2632 | 0.7422 |
0.1835 | 50.0 | 29500 | 0.2599 | 0.7398 |
0.1803 | 51.0 | 30090 | 0.2641 | 0.7379 |
0.1808 | 52.0 | 30680 | 0.2586 | 0.7355 |
0.174 | 53.0 | 31270 | 0.2502 | 0.7394 |
0.1774 | 54.0 | 31860 | 0.2650 | 0.7361 |
0.1804 | 55.0 | 32450 | 0.2486 | 0.7330 |
0.1814 | 56.0 | 33040 | 0.2919 | 0.7422 |
0.1679 | 57.0 | 33630 | 0.2837 | 0.7398 |
0.1665 | 58.0 | 34220 | 0.2751 | 0.7391 |
0.1732 | 59.0 | 34810 | 0.2575 | 0.7315 |
0.1666 | 60.0 | 35400 | 0.2518 | 0.7349 |
0.1667 | 61.0 | 35990 | 0.2582 | 0.7407 |
0.172 | 62.0 | 36580 | 0.2512 | 0.7373 |
0.1657 | 63.0 | 37170 | 0.2500 | 0.7364 |
0.1687 | 64.0 | 37760 | 0.2589 | 0.7419 |
0.1605 | 65.0 | 38350 | 0.2833 | 0.7434 |
0.1635 | 66.0 | 38940 | 0.2536 | 0.7343 |
0.1583 | 67.0 | 39530 | 0.2554 | 0.7416 |
0.1638 | 68.0 | 40120 | 0.2598 | 0.7462 |
0.1615 | 69.0 | 40710 | 0.3022 | 0.7407 |
0.16 | 70.0 | 41300 | 0.2653 | 0.7459 |
0.1601 | 71.0 | 41890 | 0.2593 | 0.7456 |
0.1567 | 72.0 | 42480 | 0.2564 | 0.7446 |
0.1503 | 73.0 | 43070 | 0.2788 | 0.7465 |
0.1531 | 74.0 | 43660 | 0.2518 | 0.7446 |
0.1536 | 75.0 | 44250 | 0.3032 | 0.7440 |
0.1549 | 76.0 | 44840 | 0.2513 | 0.7370 |
0.1543 | 77.0 | 45430 | 0.2647 | 0.7486 |
0.1516 | 78.0 | 46020 | 0.2511 | 0.7471 |
0.1512 | 79.0 | 46610 | 0.2562 | 0.7431 |
0.1493 | 80.0 | 47200 | 0.2568 | 0.7474 |
0.1443 | 81.0 | 47790 | 0.2650 | 0.7492 |
0.1487 | 82.0 | 48380 | 0.2488 | 0.7492 |
0.1453 | 83.0 | 48970 | 0.2444 | 0.7431 |
0.1465 | 84.0 | 49560 | 0.2665 | 0.7443 |
0.1444 | 85.0 | 50150 | 0.2531 | 0.7456 |
0.1487 | 86.0 | 50740 | 0.2475 | 0.7431 |
0.1425 | 87.0 | 51330 | 0.2774 | 0.7453 |
0.145 | 88.0 | 51920 | 0.2636 | 0.7465 |
0.1399 | 89.0 | 52510 | 0.2552 | 0.7459 |
0.1429 | 90.0 | 53100 | 0.2611 | 0.7443 |
0.1453 | 91.0 | 53690 | 0.2558 | 0.7468 |
0.1473 | 92.0 | 54280 | 0.2467 | 0.7413 |
0.1433 | 93.0 | 54870 | 0.2712 | 0.7474 |
0.1445 | 94.0 | 55460 | 0.2591 | 0.7465 |
0.1432 | 95.0 | 56050 | 0.2604 | 0.7486 |
0.1397 | 96.0 | 56640 | 0.2618 | 0.7492 |
0.1412 | 97.0 | 57230 | 0.2550 | 0.7483 |
0.1327 | 98.0 | 57820 | 0.2512 | 0.7471 |
0.136 | 99.0 | 58410 | 0.2525 | 0.7489 |
0.145 | 100.0 | 59000 | 0.2534 | 0.7483 |
Framework versions
- Transformers 4.30.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.