GATE-AraBert-v0

This is a General Arabic Text Embedding trained using SentenceTransformers in a multi-task setup. The system trains on the AllNLI and on the STS dataset.

Model Details

Model Description

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Omartificial-Intelligence-Space/GATE-AraBert-v0")
# Run inference
sentences = [
    'الكلب البني مستلقي على جانبه على سجادة بيج، مع جسم أخضر في المقدمة.',
    'لقد مات الكلب',
    'شخص طويل القامة',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.8384
spearman_cosine 0.8389
pearson_manhattan 0.8248
spearman_manhattan 0.8329
pearson_euclidean 0.825
spearman_euclidean 0.8337
pearson_dot 0.8072
spearman_dot 0.8098
pearson_max 0.8384
spearman_max 0.8389

Semantic Similarity

Metric Value
pearson_cosine 0.7908
spearman_cosine 0.7893
pearson_manhattan 0.7923
spearman_manhattan 0.7947
pearson_euclidean 0.7904
spearman_euclidean 0.7934
pearson_dot 0.7404
spearman_dot 0.7354
pearson_max 0.7923
spearman_max 0.7947
Downloads last month
577
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Omartificial-Intelligence-Space/GATE-AraBert-v0

Dataset used to train Omartificial-Intelligence-Space/GATE-AraBert-v0

Collection including Omartificial-Intelligence-Space/GATE-AraBert-v0

Evaluation results