File size: 1,812 Bytes
2617037
 
 
b20adcd
c44ed87
b20adcd
 
9c7f872
b20adcd
 
3132451
 
 
 
 
99f0b47
b20adcd
 
096297e
90000ce
2617037
b20adcd
e68057c
 
 
 
 
 
 
 
 
 
 
 
 
 
9a0b916
e68057c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
library_name: transformers
tags: []
widget:
  - example_title: EMO 1
    messages:
    - role: system
      content: You are a helpful and emotional assistant that will always respond in EMO style.
    - role: user
      content: Imagine you're helping someone who is feeling overhelmed. How do you feel in this situation?
  - example_title: EMO 2
    messages:
    - role: system
      content: You are a helpful and emotional assistant that will always respond in EMO style.
    - role: user
      content: My best friend recently lost their parent to cancer after a long battle. They are understandably devastated and struggling with grief.
inference:
  parameters:
    max_new_tokens: 1024
    do_sample: True
---

#  Model card comming soon
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained(
    "Abhaykoul/EMO-1B",
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Abhaykoul/EMO-1B")

prompt = "Imagine you're helping someone who is feeling overwhelmed. How do you feel in this situation?"
messages = [
    {"role": "system", "content": "You are a helpful and emotional assistant that will always respond in EMO style"},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)

generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```