SentenceTransformer based on BAAI/bge-base-en-v1.5

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Nutanix/bge-base-mbpp")
# Run inference
sentences = [
    'Write a function to find sum and average of first n natural numbers.',
    'def sum_average(number):\r\n total = 0\r\n for value in range(1, number + 1):\r\n    total = total + value\r\n average = total / number\r\n return (total,average)',
    'def long_words(n, str):\r\n    word_len = []\r\n    txt = str.split(" ")\r\n    for x in txt:\r\n        if len(x) > n:\r\n            word_len.append(x)\r\n    return word_len\t',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.9971
dot_accuracy 0.0028
manhattan_accuracy 0.9961
euclidean_accuracy 0.9971
max_accuracy 0.9971

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss sts-dev_max_accuracy
0.0050 100 4.3364 -
0.0101 200 4.122 -
0.0151 300 4.0825 -
0.0202 400 4.0381 -
0.0252 500 4.015 -
0.0302 600 3.9996 -
0.0353 700 3.9567 -
0.0403 800 3.9593 -
0.0453 900 3.9456 -
0.0504 1000 3.938 -
0.0554 1100 3.933 -
0.0605 1200 3.905 -
0.0655 1300 3.906 -
0.0705 1400 3.9073 -
0.0756 1500 3.9193 -
0.0806 1600 3.9016 -
0.0857 1700 3.8899 -
0.0907 1800 3.9 -
0.0957 1900 3.8983 -
0.1008 2000 3.876 -
0.1058 2100 3.9001 -
0.1109 2200 3.8818 -
0.1159 2300 3.8788 -
0.1209 2400 3.8815 -
0.1260 2500 3.8664 -
0.1310 2600 3.854 -
0.1360 2700 3.8674 -
0.1411 2800 3.8525 -
0.1461 2900 3.8733 -
0.1512 3000 3.8538 -
0.1562 3100 3.8348 -
0.1612 3200 3.8378 -
0.1663 3300 3.8504 -
0.1713 3400 3.8409 -
0.1764 3500 3.8436 -
0.1814 3600 3.8422 -
0.1864 3700 3.8629 -
0.1915 3800 3.8589 -
0.1965 3900 3.8572 -
0.2016 4000 3.8309 -
0.2066 4100 3.8465 -
0.2116 4200 3.8311 -
0.2167 4300 3.8124 -
0.2217 4400 3.8412 -
0.2267 4500 3.8228 -
0.2318 4600 3.8012 -
0.2368 4700 3.8185 -
0.2419 4800 3.8242 -
0.2469 4900 3.7917 -
0.2519 5000 3.8022 -
0.2570 5100 3.7991 -
0.2620 5200 3.7943 -
0.2671 5300 3.7874 -
0.2721 5400 3.7987 -
0.2771 5500 3.7982 -
0.2822 5600 3.7789 -
0.2872 5700 3.7837 -
0.2923 5800 3.7762 -
0.2973 5900 3.7854 -
0.3023 6000 3.7719 -
0.3074 6100 3.7925 -
0.3124 6200 3.7795 -
0.3174 6300 3.7725 -
0.3225 6400 3.7897 -
0.3275 6500 3.773 -
0.3326 6600 3.7803 -
0.3376 6700 3.7476 -
0.3426 6800 3.7585 -
0.3477 6900 3.7426 -
0.3527 7000 3.7529 -
0.3578 7100 3.7745 -
0.3628 7200 3.7771 -
0.3678 7300 3.7598 -
0.3729 7400 3.7428 -
0.3779 7500 3.7409 -
0.3829 7600 3.7569 -
0.3880 7700 3.7517 -
0.3930 7800 3.7484 -
0.3981 7900 3.7415 -
0.4031 8000 3.7228 -
0.4081 8100 3.7569 -
0.4132 8200 3.7421 -
0.4182 8300 3.7233 -
0.4233 8400 3.72 -
0.4283 8500 3.7431 -
0.4333 8600 3.7258 -
0.4384 8700 3.73 -
0.4434 8800 3.7286 -
0.4485 8900 3.7487 -
0.4535 9000 3.7359 -
0.4585 9100 3.7387 -
0.4636 9200 3.7135 -
0.4686 9300 3.7219 -
0.4736 9400 3.7189 -
0.4787 9500 3.7234 -
0.4837 9600 3.7333 -
0.4888 9700 3.7027 -
0.4938 9800 3.7358 -
0.4988 9900 3.6959 -
0.5039 10000 3.7051 -
0.5089 10100 3.7205 -
0.5140 10200 3.711 -
0.5190 10300 3.6898 -
0.5240 10400 3.7103 -
0.5291 10500 3.695 -
0.5341 10600 3.7108 -
0.5392 10700 3.7226 -
0.5442 10800 3.7004 -
0.5492 10900 3.736 -
0.5543 11000 3.7135 -
0.5593 11100 3.7148 -
0.5643 11200 3.7285 -
0.5694 11300 3.694 -
0.5744 11400 3.6913 -
0.5795 11500 3.69 -
0.5845 11600 3.7249 -
0.5895 11700 3.6907 -
0.5946 11800 3.7135 -
0.5996 11900 3.7172 -
0.6047 12000 3.7087 -
0.6097 12100 3.7045 -
0.6147 12200 3.7043 -
0.6198 12300 3.693 -
0.6248 12400 3.6982 -
0.6298 12500 3.6922 -
0.6349 12600 3.6857 -
0.6399 12700 3.6834 -
0.6450 12800 3.7052 -
0.6500 12900 3.6935 -
0.6550 13000 3.6736 -
0.6601 13100 3.7026 -
0.6651 13200 3.6846 -
0.6702 13300 3.704 -
0.6752 13400 3.6818 -
0.6802 13500 3.7075 -
0.6853 13600 3.6688 -
0.6903 13700 3.6933 -
0.6954 13800 3.6971 -
0.7004 13900 3.6785 -
0.7054 14000 3.7088 -
0.7105 14100 3.7127 -
0.7155 14200 3.6996 -
0.7205 14300 3.6901 -
0.7256 14400 3.6914 -
0.7306 14500 3.6659 -
0.7357 14600 3.6859 -
0.7407 14700 3.68 -
0.7457 14800 3.6874 -
0.7508 14900 3.6854 -
0.7558 15000 3.671 -
0.7609 15100 3.6909 -
0.7659 15200 3.7014 -
0.7709 15300 3.6828 -
0.7760 15400 3.6773 -
0.7810 15500 3.6863 -
0.7861 15600 3.6892 -
0.7911 15700 3.6864 -
0.7961 15800 3.6586 -
0.8012 15900 3.6639 -
0.8062 16000 3.6843 -
0.8112 16100 3.6865 -
0.8163 16200 3.678 -
0.8213 16300 3.6825 -
0.8264 16400 3.7068 -
0.8314 16500 3.6886 -
0.8364 16600 3.6905 -
0.8415 16700 3.6905 -
0.8465 16800 3.6677 -
0.8516 16900 3.684 -
0.8566 17000 3.6872 -
0.8616 17100 3.6849 -
0.8667 17200 3.662 -
0.8717 17300 3.6887 -
0.8768 17400 3.6999 -
0.8818 17500 3.6916 -
0.8868 17600 3.6853 -
0.8919 17700 3.6971 -
0.8969 17800 3.6846 -
0.9019 17900 3.6701 -
0.9070 18000 3.6911 -
0.9120 18100 3.7021 -
0.9171 18200 3.6851 -
0.9221 18300 3.6924 -
0.9271 18400 3.6644 -
0.9322 18500 3.6674 -
0.9372 18600 3.6962 -
0.9423 18700 3.6759 -
0.9473 18800 3.6839 -
0.9523 18900 3.6822 -
0.9574 19000 3.6947 -
0.9624 19100 3.6589 -
0.9674 19200 3.6817 -
0.9725 19300 3.6754 -
0.9775 19400 3.6947 -
0.9826 19500 3.6785 -
0.9876 19600 3.6776 -
0.9926 19700 3.6791 -
0.9977 19800 3.6795 -
1.0 19846 - 0.9971

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.0.1
  • Transformers: 4.40.0
  • PyTorch: 2.3.0+cu121
  • Accelerate: 0.33.0
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

TripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification}, 
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Downloads last month
2
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Nutanix/bge-base-mbpp

Finetuned
(331)
this model

Evaluation results