File size: 3,527 Bytes
bbf59bb
80e566c
bbf59bb
80e566c
 
 
bbf59bb
80e566c
 
 
bbf59bb
 
80e566c
 
bbf59bb
80e566c
 
bbf59bb
80e566c
 
 
 
 
bbf59bb
80e566c
 
 
bbf59bb
80e566c
 
 
 
 
 
 
bbf59bb
80e566c
 
 
 
 
bbf59bb
80e566c
 
bbf59bb
80e566c
 
bbf59bb
80e566c
 
 
 
 
 
 
 
bbf59bb
80e566c
 
 
 
 
bbf59bb
80e566c
 
 
 
 
 
bbf59bb
80e566c
 
 
 
 
bbf59bb
80e566c
 
 
 
 
 
 
 
 
bbf59bb
80e566c
 
 
 
 
 
 
bbf59bb
 
80e566c
 
 
bbf59bb
80e566c
bbf59bb
 
80e566c
 
 
bbf59bb
80e566c
bbf59bb
80e566c
bbf59bb
80e566c
bbf59bb
80e566c
bbf59bb
80e566c
bbf59bb
80e566c
bbf59bb
80e566c
bbf59bb
80e566c
bbf59bb
80e566c
bbf59bb
80e566c
bbf59bb
 
 
80e566c
bbf59bb
80e566c
 
 
 
 
 
 
 
 
 
 
 
 
 
bbf59bb
80e566c
bbf59bb
 
 
 
 
80e566c
 
 
 
bbf59bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
---
license: mit
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: 152334H/miqu-1-70b-sf
model-index:
- name: miqu-limarp-70b
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.3.0`
```yaml
base_model: 152334H/miqu-1-70b-sf
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: NobodyExistsOnTheInternet/LimaRP
    type: sharegpt
    conversation: chatml
  - path: Doctor-Shotgun/no-robots-sharegpt
    type: sharegpt
    conversation: chatml

chat_template: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0
output_dir: ./miqu-lora
save_safetensors: true

adapter: qlora
lora_model_dir:

sequence_len: 8192
sample_packing: true

lora_r: 64
lora_alpha: 128
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
  - embed_tokens
  - lm_head

wandb_project: miqu-lora
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 4
optimizer: paged_lion_8bit
lr_scheduler: cosine
learning_rate: 0.00025

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
auto_resume_from_checkpoints: true
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
save_total_limit: 2

warmup_steps: 10
eval_table_size:
weight_decay: 0
special_tokens:
  bos_token: "<s>"
  eos_token: "<|im_end|>"
  unk_token: "</s>"


tokens:
    - "<|im_start|>"
    - "<|im_end|>"

neftune_noise_alpha: 5


hub_model_id: NobodyExistsOnTheInternet/miqu-limarp-70b
hub_strategy: all_checkpoints
hf_use_auth_token: true

```

</details><br>

# miqu-limarp-70b

This model is a fine-tuned version of [152334H/miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf) on the None dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.00025
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4

### Training results



### Framework versions

- Transformers 4.37.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.16.1
- Tokenizers 0.15.0
## Training procedure


The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16

### Framework versions


- PEFT 0.6.0