File size: 3,527 Bytes
bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb 80e566c bbf59bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
---
license: mit
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: 152334H/miqu-1-70b-sf
model-index:
- name: miqu-limarp-70b
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.3.0`
```yaml
base_model: 152334H/miqu-1-70b-sf
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: NobodyExistsOnTheInternet/LimaRP
type: sharegpt
conversation: chatml
- path: Doctor-Shotgun/no-robots-sharegpt
type: sharegpt
conversation: chatml
chat_template: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0
output_dir: ./miqu-lora
save_safetensors: true
adapter: qlora
lora_model_dir:
sequence_len: 8192
sample_packing: true
lora_r: 64
lora_alpha: 128
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
- embed_tokens
- lm_head
wandb_project: miqu-lora
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 4
optimizer: paged_lion_8bit
lr_scheduler: cosine
learning_rate: 0.00025
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
auto_resume_from_checkpoints: true
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
save_total_limit: 2
warmup_steps: 10
eval_table_size:
weight_decay: 0
special_tokens:
bos_token: "<s>"
eos_token: "<|im_end|>"
unk_token: "</s>"
tokens:
- "<|im_start|>"
- "<|im_end|>"
neftune_noise_alpha: 5
hub_model_id: NobodyExistsOnTheInternet/miqu-limarp-70b
hub_strategy: all_checkpoints
hf_use_auth_token: true
```
</details><br>
# miqu-limarp-70b
This model is a fine-tuned version of [152334H/miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00025
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.16.1
- Tokenizers 0.15.0
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.6.0
|