Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/models-cards#model-card-metadata)

language:

  • vi

tags:

  • t5
  • seq2seq

Machine translation for vietnamese

Model Description

T5-vi-en-base is a transformer model for vietnamese machine translation designed using T5 architecture.

Training data

T5-vi-en-base was trained on 4M sentence pairs (english,vietnamese)

How to use

from transformers import T5ForConditionalGeneration, T5Tokenizer
import torch
if torch.cuda.is_available():       
    device = torch.device("cuda")

    print('There are %d GPU(s) available.' % torch.cuda.device_count())

    print('We will use the GPU:', torch.cuda.get_device_name(0))
else:
    print('No GPU available, using the CPU instead.')
    device = torch.device("cpu")

model = T5ForConditionalGeneration.from_pretrained("NlpHUST/t5-vi-en-base")
tokenizer = T5Tokenizer.from_pretrained("NlpHUST/t5-vi-en-base")
model.to(device)

src = "Theo lãnh đạo Sở Y tế, 3 người này không có triệu chứng sốt, ho, khó thở, đã được lấy mẫu xét nghiệm và cách ly tập trung."
tokenized_text = tokenizer.encode(src, return_tensors="pt").to(device)
model.eval()
summary_ids = model.generate(
                    tokenized_text,
                    max_length=256, 
                    num_beams=5,
                    repetition_penalty=2.5, 
                    length_penalty=1.0, 
                    early_stopping=True
                )
output = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
print(output)

According to the head of the Department of Health, the three people had no symptoms of fever, cough, shortness of breath, were taken samples for testing and concentrated quarantine.
Downloads last month
236
Hosted inference API
This model can be loaded on the Inference API on-demand.