Add evaluation results on the lewtun--dog_food config and test split of lewtun/dog_food
#1
by
autoevaluator
HF staff
- opened
README.md
CHANGED
@@ -17,6 +17,62 @@ co2_eq_emissions:
|
|
17 |
emissions: 6.799888815236616
|
18 |
eval_info:
|
19 |
col_mapping: test
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
---
|
21 |
|
22 |
# Model Trained Using AutoTrain
|
|
|
17 |
emissions: 6.799888815236616
|
18 |
eval_info:
|
19 |
col_mapping: test
|
20 |
+
model-index:
|
21 |
+
- name: NimaBoscarino/dog_food
|
22 |
+
results:
|
23 |
+
- task:
|
24 |
+
type: image-classification
|
25 |
+
name: Image Classification
|
26 |
+
dataset:
|
27 |
+
name: lewtun/dog_food
|
28 |
+
type: lewtun/dog_food
|
29 |
+
config: lewtun--dog_food
|
30 |
+
split: test
|
31 |
+
metrics:
|
32 |
+
- name: Accuracy
|
33 |
+
type: accuracy
|
34 |
+
value: 1.0
|
35 |
+
verified: true
|
36 |
+
- name: Precision Macro
|
37 |
+
type: precision
|
38 |
+
value: 1.0
|
39 |
+
verified: true
|
40 |
+
- name: Precision Micro
|
41 |
+
type: precision
|
42 |
+
value: 1.0
|
43 |
+
verified: true
|
44 |
+
- name: Precision Weighted
|
45 |
+
type: precision
|
46 |
+
value: 1.0
|
47 |
+
verified: true
|
48 |
+
- name: Recall Macro
|
49 |
+
type: recall
|
50 |
+
value: 1.0
|
51 |
+
verified: true
|
52 |
+
- name: Recall Micro
|
53 |
+
type: recall
|
54 |
+
value: 1.0
|
55 |
+
verified: true
|
56 |
+
- name: Recall Weighted
|
57 |
+
type: recall
|
58 |
+
value: 1.0
|
59 |
+
verified: true
|
60 |
+
- name: F1 Macro
|
61 |
+
type: f1
|
62 |
+
value: 1.0
|
63 |
+
verified: true
|
64 |
+
- name: F1 Micro
|
65 |
+
type: f1
|
66 |
+
value: 1.0
|
67 |
+
verified: true
|
68 |
+
- name: F1 Weighted
|
69 |
+
type: f1
|
70 |
+
value: 1.0
|
71 |
+
verified: true
|
72 |
+
- name: loss
|
73 |
+
type: loss
|
74 |
+
value: 1.848173087637406e-05
|
75 |
+
verified: true
|
76 |
---
|
77 |
|
78 |
# Model Trained Using AutoTrain
|