NiloofarMomeni/distilhubert-finetuned-strain-finetuned-roughness
This model is a fine-tuned version of ntu-spml/distilhubert on the PQVD dataset. It achieves the following results on the evaluation set:
- Loss: 2.2467
- Accuracy: 0.7253
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5013 | 1.0 | 46 | 1.0131 | 0.6593 |
0.4913 | 2.0 | 92 | 0.6931 | 0.6813 |
0.3487 | 3.0 | 138 | 0.8073 | 0.6044 |
0.3173 | 4.0 | 184 | 0.7272 | 0.6813 |
0.2558 | 5.0 | 230 | 1.0216 | 0.6593 |
0.2806 | 6.0 | 276 | 0.9014 | 0.6923 |
0.1703 | 7.0 | 322 | 1.1948 | 0.6484 |
0.1371 | 8.0 | 368 | 1.4679 | 0.6484 |
0.1612 | 9.0 | 414 | 1.4535 | 0.6484 |
0.1375 | 10.0 | 460 | 1.6594 | 0.6593 |
0.0171 | 11.0 | 506 | 1.9542 | 0.6484 |
0.0014 | 12.0 | 552 | 1.8910 | 0.7033 |
0.0017 | 13.0 | 598 | 2.0565 | 0.7033 |
0.0006 | 14.0 | 644 | 2.0231 | 0.7033 |
0.0006 | 15.0 | 690 | 2.1247 | 0.6923 |
0.0005 | 16.0 | 736 | 2.2004 | 0.6813 |
0.0003 | 17.0 | 782 | 2.2082 | 0.7033 |
0.0002 | 18.0 | 828 | 2.2396 | 0.7033 |
0.0002 | 19.0 | 874 | 2.2416 | 0.7253 |
0.0002 | 20.0 | 920 | 2.2467 | 0.7253 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 103
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for NiloofarMomeni/distilhubert-finetuned-roughness
Base model
ntu-spml/distilhubert