NiloofarMomeni/distilhubert-finetuned-strain-finetuned-roughness

This model is a fine-tuned version of ntu-spml/distilhubert on the PQVD dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2467
  • Accuracy: 0.7253

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5013 1.0 46 1.0131 0.6593
0.4913 2.0 92 0.6931 0.6813
0.3487 3.0 138 0.8073 0.6044
0.3173 4.0 184 0.7272 0.6813
0.2558 5.0 230 1.0216 0.6593
0.2806 6.0 276 0.9014 0.6923
0.1703 7.0 322 1.1948 0.6484
0.1371 8.0 368 1.4679 0.6484
0.1612 9.0 414 1.4535 0.6484
0.1375 10.0 460 1.6594 0.6593
0.0171 11.0 506 1.9542 0.6484
0.0014 12.0 552 1.8910 0.7033
0.0017 13.0 598 2.0565 0.7033
0.0006 14.0 644 2.0231 0.7033
0.0006 15.0 690 2.1247 0.6923
0.0005 16.0 736 2.2004 0.6813
0.0003 17.0 782 2.2082 0.7033
0.0002 18.0 828 2.2396 0.7033
0.0002 19.0 874 2.2416 0.7253
0.0002 20.0 920 2.2467 0.7253

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
103
Safetensors
Model size
23.7M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for NiloofarMomeni/distilhubert-finetuned-roughness

Finetuned
(455)
this model

Evaluation results