BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("NickyNicky/bge-base-financial-matryoshka")
# Run inference
sentences = [
'Non-GAAP earnings from operations and non-GAAP operating profit margin consist of earnings from operations or earnings from operations as a percentage of net revenue excluding the items mentioned above and charges relating to the amortization of intangible assets, goodwill impairment, transformation costs and acquisition, disposition and other related charges. Hewlett Packard Enterprise excludes these items because they are non-cash expenses, are significantly impacted by the timing and magnitude of acquisitions, and are inconsistent in amount and frequency.',
"What specific charges are excluded from Hewlett Packard Enterprise's non-GAAP operating profit margin and why?",
'How many shares were outstanding at the beginning of 2023 and what was their aggregate intrinsic value?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7157 |
cosine_accuracy@3 | 0.8571 |
cosine_accuracy@5 | 0.8871 |
cosine_accuracy@10 | 0.9314 |
cosine_precision@1 | 0.7157 |
cosine_precision@3 | 0.2857 |
cosine_precision@5 | 0.1774 |
cosine_precision@10 | 0.0931 |
cosine_recall@1 | 0.7157 |
cosine_recall@3 | 0.8571 |
cosine_recall@5 | 0.8871 |
cosine_recall@10 | 0.9314 |
cosine_ndcg@10 | 0.8275 |
cosine_mrr@10 | 0.794 |
cosine_map@100 | 0.7969 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7143 |
cosine_accuracy@3 | 0.8571 |
cosine_accuracy@5 | 0.8871 |
cosine_accuracy@10 | 0.9314 |
cosine_precision@1 | 0.7143 |
cosine_precision@3 | 0.2857 |
cosine_precision@5 | 0.1774 |
cosine_precision@10 | 0.0931 |
cosine_recall@1 | 0.7143 |
cosine_recall@3 | 0.8571 |
cosine_recall@5 | 0.8871 |
cosine_recall@10 | 0.9314 |
cosine_ndcg@10 | 0.8268 |
cosine_mrr@10 | 0.793 |
cosine_map@100 | 0.7958 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7157 |
cosine_accuracy@3 | 0.8514 |
cosine_accuracy@5 | 0.8829 |
cosine_accuracy@10 | 0.93 |
cosine_precision@1 | 0.7157 |
cosine_precision@3 | 0.2838 |
cosine_precision@5 | 0.1766 |
cosine_precision@10 | 0.093 |
cosine_recall@1 | 0.7157 |
cosine_recall@3 | 0.8514 |
cosine_recall@5 | 0.8829 |
cosine_recall@10 | 0.93 |
cosine_ndcg@10 | 0.8255 |
cosine_mrr@10 | 0.7919 |
cosine_map@100 | 0.7946 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7143 |
cosine_accuracy@3 | 0.8429 |
cosine_accuracy@5 | 0.8743 |
cosine_accuracy@10 | 0.9214 |
cosine_precision@1 | 0.7143 |
cosine_precision@3 | 0.281 |
cosine_precision@5 | 0.1749 |
cosine_precision@10 | 0.0921 |
cosine_recall@1 | 0.7143 |
cosine_recall@3 | 0.8429 |
cosine_recall@5 | 0.8743 |
cosine_recall@10 | 0.9214 |
cosine_ndcg@10 | 0.8203 |
cosine_mrr@10 | 0.7879 |
cosine_map@100 | 0.7909 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6829 |
cosine_accuracy@3 | 0.81 |
cosine_accuracy@5 | 0.85 |
cosine_accuracy@10 | 0.9043 |
cosine_precision@1 | 0.6829 |
cosine_precision@3 | 0.27 |
cosine_precision@5 | 0.17 |
cosine_precision@10 | 0.0904 |
cosine_recall@1 | 0.6829 |
cosine_recall@3 | 0.81 |
cosine_recall@5 | 0.85 |
cosine_recall@10 | 0.9043 |
cosine_ndcg@10 | 0.7926 |
cosine_mrr@10 | 0.7571 |
cosine_map@100 | 0.7607 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 6 tokens
- mean: 46.8 tokens
- max: 512 tokens
- min: 8 tokens
- mean: 20.89 tokens
- max: 51 tokens
- Samples:
positive anchor Retail sales mix by product type for company-operated stores shows beverages at 74%, food at 22%, and other items at 4%.
What are the primary products sold in Starbucks company-operated stores?
The pre-tax adjustment for transformation costs was $136 in 2021 and $111 in 2020. Transformation costs primarily include costs related to store and business closure costs and third party professional consulting fees associated with business transformation and cost saving initiatives.
What was the purpose of pre-tax adjustments for transformation costs by The Kroger Co.?
HP's Consolidated Financial Statements are prepared in accordance with United States generally accepted accounting principles (GAAP).
What principles do HP's Consolidated Financial Statements adhere to?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 40per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 10lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 40per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.9114 | 9 | - | 0.7311 | 0.7527 | 0.7618 | 0.6911 | 0.7612 |
1.0127 | 10 | 1.9734 | - | - | - | - | - |
1.9241 | 19 | - | 0.7638 | 0.7748 | 0.7800 | 0.7412 | 0.7836 |
2.0253 | 20 | 0.8479 | - | - | - | - | - |
2.9367 | 29 | - | 0.7775 | 0.7842 | 0.7902 | 0.7473 | 0.7912 |
3.0380 | 30 | 0.524 | - | - | - | - | - |
3.9494 | 39 | - | 0.7831 | 0.7860 | 0.7915 | 0.7556 | 0.7939 |
4.0506 | 40 | 0.3826 | - | - | - | - | - |
4.9620 | 49 | - | 0.7896 | 0.7915 | 0.7927 | 0.7616 | 0.7983 |
5.0633 | 50 | 0.3165 | - | - | - | - | - |
5.9747 | 59 | - | 0.7925 | 0.7946 | 0.7943 | 0.7603 | 0.7978 |
6.0759 | 60 | 0.2599 | - | - | - | - | - |
6.9873 | 69 | - | 0.7918 | 0.7949 | 0.7951 | 0.7608 | 0.7976 |
7.0886 | 70 | 0.2424 | - | - | - | - | - |
8.0 | 79 | - | 0.7925 | 0.7956 | 0.7959 | 0.7612 | 0.7989 |
8.1013 | 80 | 0.2243 | - | - | - | - | - |
8.9114 | 88 | - | 0.7927 | 0.7956 | 0.7961 | 0.7610 | 0.7983 |
9.1139 | 90 | 0.2222 | 0.7909 | 0.7946 | 0.7958 | 0.7607 | 0.7969 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.2.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for NickyNicky/bge-base-financial-matryoshka_test_1
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.716
- Cosine Accuracy@3 on dim 768self-reported0.857
- Cosine Accuracy@5 on dim 768self-reported0.887
- Cosine Accuracy@10 on dim 768self-reported0.931
- Cosine Precision@1 on dim 768self-reported0.716
- Cosine Precision@3 on dim 768self-reported0.286
- Cosine Precision@5 on dim 768self-reported0.177
- Cosine Precision@10 on dim 768self-reported0.093
- Cosine Recall@1 on dim 768self-reported0.716
- Cosine Recall@3 on dim 768self-reported0.857