File size: 3,425 Bytes
39ae8bf f8e536d 6060ae8 f8e536d 6060ae8 f8e536d 0efe51a f8e536d 6060ae8 f8e536d 218a115 6060ae8 6e1d240 6060ae8 6e1d240 6060ae8 6e1d240 6060ae8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: cc-by-nc-4.0
---
# Octo-planner: On-device Language Model for Planner-Action Agents Framework
We're thrilled to introduce the Octo-planner, the latest breakthrough in on-device language models from Nexa AI. Developed for the Planner-Action Agents Framework, Octo-planner enables rapid and efficient planning without the need for cloud connectivity, this model together with [Octopus-V2](https://huggingface.co/NexaAIDev/Octopus-v2) can work on edge devices locally to support AI Agent usages.
### Key Features of Octo-planner:
- **Efficient Planning**: Utilizes fine-tuned plan model based on Phi-3 Mini (2.51 billion parameters) for high efficiency and low power consumption.
- **Agent Framework**: Separates planning and action, allowing for specialized optimization and improved scalability.
- **Enhanced Accuracy**: Achieves a planning success rate of 98.1% on benchmark dataset, providing reliable and effective performance.
- **On-device Operation**: Designed for edge devices, ensuring fast response times and enhanced privacy by processing data locally.
## Example Usage
Below is a demo of Octo-planner:
<p align="center" width="100%">
<a><img src="1-demo.png" alt="ondevice" style="width: 80%; min-width: 300px; display: block; margin: auto;"></a>
</p>
Run below code to use Octopus Planner for a given question:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "NexaAIDev/octopus-planning"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
question = "Find my presentation for tomorrow's meeting, connect to the conference room projector via Bluetooth, increase the screen brightness, take a screenshot of the final summary slide, and email it to all participants"
inputs = f"<|user|>{question}<|end|><|assistant|>"
input_ids = tokenizer(inputs, return_tensors="pt").to(model.device)
outputs = model.generate(
input_ids=input_ids["input_ids"],
max_length=1024,
do_sample=False)
res = tokenizer.decode(outputs.tolist()[0])
print(f"=== inference result ===\n{res}")
```
## Training Data
We wrote 10 Android API descriptions to used to train the models, see this file for details. Below is one Android API description example
```
def send_email(recipient, title, content):
"""
Sends an email to a specified recipient with a given title and content.
Parameters:
- recipient (str): The email address of the recipient.
- title (str): The subject line of the email. This is a brief summary or title of the email's purpose or content.
- content (str): The main body text of the email. It contains the primary message, information, or content that is intended to be communicated to the recipient.
"""
```
## Contact Us
For support or to provide feedback, please [contact us](mailto:octopus@nexa4ai.com).
## License and Citation
Refer to our [license page](https://www.nexa4ai.com/licenses/v2) for usage details. Please cite our work using the below reference for any academic or research purposes.
```
@article{nexa2024octopusplanner,
title={Planner-Action Agents Framework for On-device Small Language Models},
author={Nexa AI Team},
journal={ArXiv},
year={2024},
volume={abs/2404.11459}
}
``` |