runningSnail commited on
Commit
6e1d240
1 Parent(s): fc231d4
Files changed (1) hide show
  1. README.md +3 -6
README.md CHANGED
@@ -21,23 +21,20 @@ Below is a code snippet to use Octopus Planner:
21
 
22
  Run below code to use Octopus Planner for a given question:
23
  ```python
 
24
  from transformers import AutoModelForCausalLM, AutoTokenizer
25
 
26
- model_id = "nexa-collaboration/planning-phi3-128k-full"
27
- tokenizer_id = "microsoft/Phi-3-mini-128k-instruct"
28
  model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
29
- tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
30
 
31
  question = "Find my presentation for tomorrow's meeting, connect to the conference room projector via Bluetooth, increase the screen brightness, take a screenshot of the final summary slide, and email it to all participants"
32
-
33
  inputs = f"<|user|>{question}<|end|><|assistant|>"
34
  input_ids = tokenizer(inputs, return_tensors="pt").to(model.device)
35
-
36
  outputs = model.generate(
37
  input_ids=input_ids["input_ids"],
38
  max_length=1024,
39
  do_sample=False)
40
-
41
  res = tokenizer.decode(outputs.tolist()[0])
42
  print(f"=== inference result ===\n{res}")
43
  ```
 
21
 
22
  Run below code to use Octopus Planner for a given question:
23
  ```python
24
+ import torch
25
  from transformers import AutoModelForCausalLM, AutoTokenizer
26
 
27
+ model_id = "NexaAIDev/octopus-planning"
 
28
  model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
29
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
30
 
31
  question = "Find my presentation for tomorrow's meeting, connect to the conference room projector via Bluetooth, increase the screen brightness, take a screenshot of the final summary slide, and email it to all participants"
 
32
  inputs = f"<|user|>{question}<|end|><|assistant|>"
33
  input_ids = tokenizer(inputs, return_tensors="pt").to(model.device)
 
34
  outputs = model.generate(
35
  input_ids=input_ids["input_ids"],
36
  max_length=1024,
37
  do_sample=False)
 
38
  res = tokenizer.decode(outputs.tolist()[0])
39
  print(f"=== inference result ===\n{res}")
40
  ```