YAML Metadata Error: "language[0]" must only contain lowercase characters
YAML Metadata Error: "language[0]" with value "nb-NO" is not valid. It must be an ISO 639-1, 639-2 or 639-3 code (two/three letters), or a special value like "code", "multilingual". If you want to use BCP-47 identifiers, you can specify them in language_bcp47.
YAML Metadata Error: "tags[4]" must be a string

XLSR-300M-bokmaal

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the NBAILAB/NPSC - 16K_MP3_BOKMAAL dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1635
  • Wer: 0.1005

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 15.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.0307 0.32 500 3.0026 1.0
2.7865 0.64 1000 2.4849 0.9926
0.7522 0.95 1500 0.4567 0.3594
0.5703 1.27 2000 0.3440 0.2586
0.4762 1.59 2500 0.2925 0.2178
0.4585 1.91 3000 0.2442 0.1981
0.4013 2.23 3500 0.2495 0.1818
0.449 2.54 4000 0.2152 0.1808
0.355 2.86 4500 0.2179 0.1670
0.3142 3.18 5000 0.1953 0.1542
0.3242 3.5 5500 0.2103 0.1526
0.3016 3.82 6000 0.1911 0.1477
0.2713 4.13 6500 0.1836 0.1422
0.2807 4.45 7000 0.1924 0.1447
0.2929 4.77 7500 0.1848 0.1402
0.2595 5.09 8000 0.1783 0.1330
0.2289 5.41 8500 0.1901 0.1313
0.2567 5.72 9000 0.1784 0.1298
0.2401 6.04 9500 0.1956 0.1298
0.2098 6.36 10000 0.1748 0.1277
0.2246 6.68 10500 0.1777 0.1254
0.2197 7.0 11000 0.1703 0.1222
0.2122 7.32 11500 0.1917 0.1221
0.2746 7.63 12000 0.1769 0.1215
0.2148 7.95 12500 0.1736 0.1193
0.1915 8.27 13000 0.1814 0.1161
0.2462 8.59 13500 0.1748 0.1166
0.1872 8.91 14000 0.1769 0.1133
0.1886 9.22 14500 0.1852 0.1143
0.1789 9.54 15000 0.1696 0.1126
0.1692 9.86 15500 0.1817 0.1122
0.1765 10.18 16000 0.1769 0.1093
0.1699 10.5 16500 0.1604 0.1084
0.1591 10.81 17000 0.1777 0.1080
0.1499 11.13 17500 0.1645 0.1074
0.163 11.45 18000 0.1704 0.1065
0.1597 11.77 18500 0.1576 0.1064
0.1484 12.09 19000 0.1637 0.1041
0.1464 12.4 19500 0.1631 0.1047
0.156 12.72 20000 0.1686 0.1029
0.1625 13.04 20500 0.1648 0.1023
0.1395 13.36 21000 0.1688 0.1027
0.1387 13.68 21500 0.1670 0.1013
0.1434 13.99 22000 0.1677 0.1017
0.1442 14.31 22500 0.1688 0.1008
0.1439 14.63 23000 0.1647 0.1004
0.137 14.95 23500 0.1636 0.1006

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0
Downloads last month
28
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train NbAiLab/XLSR-300M-bokmaal

Evaluation results