T5-Small_Text-Summarization

This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6045
  • Rouge1: 0.2389
  • Rouge2: 0.1905
  • Rougel: 0.2306
  • Rougelsum: 0.2307
  • Gen Len: 18.9982

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.9769 1.0 1895 1.7147 0.2325 0.1837 0.2227 0.2227 19.0
1.837 2.0 3790 1.6430 0.2369 0.1884 0.2283 0.2283 19.0
1.7849 3.0 5685 1.6137 0.2387 0.1901 0.2304 0.2304 18.9982
1.7791 4.0 7580 1.6045 0.2389 0.1905 0.2306 0.2307 18.9982

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
22
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Navanjana/T5-Small_Text-Summarization

Base model

google-t5/t5-small
Finetuned
(1649)
this model