File size: 2,358 Bytes
beb6a56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: mit
tags:
- generated_from_trainer
datasets:
- generator
model-index:
- name: gpt2-cocnat-mod-datasets-txt-processing
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gpt2-cocnat-mod-datasets-txt-processing

This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 4.3377

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 6
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 6.6848        | 0.3   | 500   | 5.6500          |
| 5.3379        | 0.59  | 1000  | 5.2204          |
| 4.9909        | 0.89  | 1500  | 4.9703          |
| 4.7146        | 1.19  | 2000  | 4.8200          |
| 4.5695        | 1.49  | 2500  | 4.7076          |
| 4.4685        | 1.78  | 3000  | 4.5985          |
| 4.3237        | 2.08  | 3500  | 4.5311          |
| 4.1614        | 2.38  | 4000  | 4.4731          |
| 4.1267        | 2.68  | 4500  | 4.4151          |
| 4.082         | 2.97  | 5000  | 4.3593          |
| 3.8448        | 3.27  | 5500  | 4.3575          |
| 3.8261        | 3.57  | 6000  | 4.3240          |
| 3.8089        | 3.86  | 6500  | 4.2887          |
| 3.6462        | 4.16  | 7000  | 4.2921          |
| 3.5453        | 4.46  | 7500  | 4.2840          |
| 3.529         | 4.76  | 8000  | 4.2688          |
| 3.4926        | 5.05  | 8500  | 4.2683          |
| 3.3463        | 5.35  | 9000  | 4.2715          |
| 3.3453        | 5.65  | 9500  | 4.2702          |
| 3.3408        | 5.95  | 10000 | 4.2694          |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.11.0+cu113
- Datasets 2.13.0
- Tokenizers 0.13.3