update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- generator
|
7 |
+
model-index:
|
8 |
+
- name: gpt2-cocnat-mod-datasets-txt-processing
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# gpt2-cocnat-mod-datasets-txt-processing
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 4.3377
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0005
|
39 |
+
- train_batch_size: 64
|
40 |
+
- eval_batch_size: 64
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: cosine
|
44 |
+
- lr_scheduler_warmup_steps: 1000
|
45 |
+
- num_epochs: 6
|
46 |
+
- mixed_precision_training: Native AMP
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
51 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
52 |
+
| 6.6848 | 0.3 | 500 | 5.6500 |
|
53 |
+
| 5.3379 | 0.59 | 1000 | 5.2204 |
|
54 |
+
| 4.9909 | 0.89 | 1500 | 4.9703 |
|
55 |
+
| 4.7146 | 1.19 | 2000 | 4.8200 |
|
56 |
+
| 4.5695 | 1.49 | 2500 | 4.7076 |
|
57 |
+
| 4.4685 | 1.78 | 3000 | 4.5985 |
|
58 |
+
| 4.3237 | 2.08 | 3500 | 4.5311 |
|
59 |
+
| 4.1614 | 2.38 | 4000 | 4.4731 |
|
60 |
+
| 4.1267 | 2.68 | 4500 | 4.4151 |
|
61 |
+
| 4.082 | 2.97 | 5000 | 4.3593 |
|
62 |
+
| 3.8448 | 3.27 | 5500 | 4.3575 |
|
63 |
+
| 3.8261 | 3.57 | 6000 | 4.3240 |
|
64 |
+
| 3.8089 | 3.86 | 6500 | 4.2887 |
|
65 |
+
| 3.6462 | 4.16 | 7000 | 4.2921 |
|
66 |
+
| 3.5453 | 4.46 | 7500 | 4.2840 |
|
67 |
+
| 3.529 | 4.76 | 8000 | 4.2688 |
|
68 |
+
| 3.4926 | 5.05 | 8500 | 4.2683 |
|
69 |
+
| 3.3463 | 5.35 | 9000 | 4.2715 |
|
70 |
+
| 3.3453 | 5.65 | 9500 | 4.2702 |
|
71 |
+
| 3.3408 | 5.95 | 10000 | 4.2694 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.26.1
|
77 |
+
- Pytorch 1.11.0+cu113
|
78 |
+
- Datasets 2.13.0
|
79 |
+
- Tokenizers 0.13.3
|