NTQ AI LM
Collection
A collection of finely tuned Language Models (LLMs) across diverse datasets.
•
3 items
•
Updated
•
2
chatntq-7b-jpntuned is a chat assistant trained by fine-tuning BlinkDL/rwkv-4-world on user-shared conversations collected from ShareGPT.
import os, gc, copy, torch
import gradio as gr
os.environ["RWKV_JIT_ON"] = '1'
os.environ["RWKV_CUDA_ON"] = '1'
from rwkv.model import RWKV
model_path = "chatntq-7b-jpntuned/ChatNTQ-7B-RWKV-4-World-JPNtuned-ctx2048.pth"
WORD_NAME = "rwkv_vocab_v20230424" # copy rwkv_vocab_v20230424.txt in chatntq-7b-jpntuned to the same folder test
ctx_limit = 1024
model = RWKV(model=model_path, strategy='cuda fp16i8 *24 -> cuda fp16')
from rwkv.utils import PIPELINE, PIPELINE_ARGS
pipeline = PIPELINE(model, WORD_NAME)
def generate_prompt(instruction):
return f"\x00Human: {instruction}\x00Assistant: "
def evaluate(
prompt,
token_count=1024,
temperature=1.2,
top_p=0.5,
presencePenalty = 0.4,
countPenalty = 0.4,
):
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
alpha_frequency = countPenalty,
alpha_presence = presencePenalty,
token_ban = [], # ban the generation of some tokens
token_stop = [0,1]) # stop generation whenever you see any token here
all_tokens = []
out_last = 0
out_str = ''
occurrence = {}
state = None
prompt = generate_prompt(prompt)
print(prompt)
for i in range(int(token_count)):
out, state = model.forward(pipeline.encode(prompt)[-ctx_limit:] if i == 0 else [token], state)
for n in occurrence:
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
if token in args.token_stop:
break
all_tokens += [token]
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
tmp = pipeline.decode(all_tokens[out_last:])
if '\ufffd' not in tmp:
out_str += tmp
out_last = i + 1
gc.collect()
torch.cuda.empty_cache()
return out_str
if __name__ == "__main__":
question = "東京の人口はどれくらいですか?"
response = evaluate(question)
For personal communication related to this project, please contact Nha Nguyen Van (nha282@gmail.com).