finetuned-dermnet
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the dermnet-images dataset. It achieves the following results on the evaluation set:
- Loss: 1.1935
- Accuracy: 0.7099
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.2171 | 0.12 | 100 | 1.5449 | 0.5390 |
1.1934 | 0.24 | 200 | 1.5524 | 0.5330 |
1.0425 | 0.36 | 300 | 1.4836 | 0.5570 |
1.2195 | 0.48 | 400 | 1.5463 | 0.5428 |
1.2398 | 0.6 | 500 | 1.5507 | 0.5548 |
1.0992 | 0.73 | 600 | 1.4974 | 0.5578 |
0.9141 | 0.85 | 700 | 1.4526 | 0.5801 |
0.9695 | 0.97 | 800 | 1.4464 | 0.5741 |
0.8629 | 1.09 | 900 | 1.5265 | 0.5677 |
0.7845 | 1.21 | 1000 | 1.5754 | 0.5583 |
0.7901 | 1.33 | 1100 | 1.5343 | 0.5690 |
0.8336 | 1.45 | 1200 | 1.4265 | 0.5891 |
0.7639 | 1.57 | 1300 | 1.5037 | 0.5750 |
0.8555 | 1.69 | 1400 | 1.4346 | 0.6011 |
0.8874 | 1.81 | 1500 | 1.3850 | 0.6003 |
0.7824 | 1.93 | 1600 | 1.4507 | 0.5891 |
0.6257 | 2.06 | 1700 | 1.4597 | 0.5925 |
0.6028 | 2.18 | 1800 | 1.4626 | 0.6054 |
0.6019 | 2.3 | 1900 | 1.5333 | 0.5664 |
0.5468 | 2.42 | 2000 | 1.4553 | 0.6007 |
0.5237 | 2.54 | 2100 | 1.4363 | 0.6015 |
0.6603 | 2.66 | 2200 | 1.4913 | 0.5750 |
0.5703 | 2.78 | 2300 | 1.4628 | 0.6071 |
0.4992 | 2.9 | 2400 | 1.4719 | 0.6011 |
0.4853 | 3.02 | 2500 | 1.4663 | 0.5887 |
0.3463 | 3.14 | 2600 | 1.5019 | 0.5947 |
0.4537 | 3.26 | 2700 | 1.5044 | 0.6037 |
0.4989 | 3.39 | 2800 | 1.4753 | 0.6135 |
0.4843 | 3.51 | 2900 | 1.4336 | 0.6221 |
0.4864 | 3.63 | 3000 | 1.4612 | 0.6161 |
0.3936 | 3.75 | 3100 | 1.4786 | 0.6217 |
0.6484 | 3.87 | 3200 | 1.4947 | 0.6148 |
0.766 | 3.99 | 3300 | 1.4022 | 0.6255 |
0.5875 | 4.11 | 3400 | 1.3863 | 0.6315 |
0.6366 | 4.23 | 3500 | 1.4059 | 0.6418 |
0.4798 | 4.35 | 3600 | 1.3654 | 0.6362 |
0.5828 | 4.47 | 3700 | 1.4061 | 0.6260 |
0.5378 | 4.59 | 3800 | 1.3399 | 0.6560 |
0.5519 | 4.72 | 3900 | 1.3586 | 0.6350 |
0.6189 | 4.84 | 4000 | 1.3274 | 0.6465 |
0.6252 | 4.96 | 4100 | 1.2417 | 0.6650 |
0.4329 | 5.08 | 4200 | 1.3092 | 0.6628 |
0.5504 | 5.2 | 4300 | 1.3120 | 0.6547 |
0.5053 | 5.32 | 4400 | 1.3241 | 0.6482 |
0.4077 | 5.44 | 4500 | 1.2671 | 0.6684 |
0.5016 | 5.56 | 4600 | 1.3034 | 0.6641 |
0.4671 | 5.68 | 4700 | 1.3233 | 0.6525 |
0.5919 | 5.8 | 4800 | 1.3478 | 0.6607 |
0.5295 | 5.93 | 4900 | 1.3041 | 0.6577 |
0.3118 | 6.05 | 5000 | 1.2377 | 0.6731 |
0.3774 | 6.17 | 5100 | 1.2894 | 0.6607 |
0.405 | 6.29 | 5200 | 1.2821 | 0.6735 |
0.3187 | 6.41 | 5300 | 1.2697 | 0.6727 |
0.4335 | 6.53 | 5400 | 1.3005 | 0.6645 |
0.3935 | 6.65 | 5500 | 1.2890 | 0.6701 |
0.5328 | 6.77 | 5600 | 1.3079 | 0.6752 |
0.3797 | 6.89 | 5700 | 1.2841 | 0.6787 |
0.353 | 7.01 | 5800 | 1.2331 | 0.6808 |
0.3576 | 7.13 | 5900 | 1.2487 | 0.6787 |
0.3157 | 7.26 | 6000 | 1.2325 | 0.6834 |
0.3551 | 7.38 | 6100 | 1.2531 | 0.6817 |
0.261 | 7.5 | 6200 | 1.2243 | 0.6979 |
0.3384 | 7.62 | 6300 | 1.2787 | 0.6821 |
0.1776 | 7.74 | 6400 | 1.2401 | 0.7001 |
0.3227 | 7.86 | 6500 | 1.2233 | 0.6941 |
0.1673 | 7.98 | 6600 | 1.2653 | 0.6958 |
0.1985 | 8.1 | 6700 | 1.2421 | 0.6911 |
0.2384 | 8.22 | 6800 | 1.2494 | 0.6915 |
0.3055 | 8.34 | 6900 | 1.2675 | 0.6937 |
0.3417 | 8.46 | 7000 | 1.2517 | 0.6967 |
0.3827 | 8.59 | 7100 | 1.2827 | 0.6911 |
0.2781 | 8.71 | 7200 | 1.2234 | 0.6979 |
0.3134 | 8.83 | 7300 | 1.1935 | 0.7099 |
0.2248 | 8.95 | 7400 | 1.2028 | 0.7044 |
0.2491 | 9.07 | 7500 | 1.2043 | 0.7108 |
0.2153 | 9.19 | 7600 | 1.2054 | 0.7057 |
0.2619 | 9.31 | 7700 | 1.2102 | 0.7035 |
0.2425 | 9.43 | 7800 | 1.2161 | 0.7078 |
0.2068 | 9.55 | 7900 | 1.2068 | 0.7069 |
0.222 | 9.67 | 8000 | 1.2035 | 0.7091 |
0.0899 | 9.79 | 8100 | 1.2022 | 0.7112 |
0.2154 | 9.92 | 8200 | 1.1999 | 0.7108 |
Framework versions
- Transformers 4.38.1
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.2
- Downloads last month
- 46
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Muzmmillcoste/finetuned-dermnet
Base model
google/vit-base-patch16-224-in21k