Back to all models
Model card Files and versions Use in transformers
fill-mask mask_token: <mask>
Query this model
🔥 This model is currently loaded and running on the Inference API. ⚠️ This model could not be loaded by the inference API. ⚠️ This model can be loaded on the Inference API on-demand.
JSON Output
API endpoint  

⚡️ Upgrade your account to access the Inference API

Share Copied link to clipboard

Monthly model downloads

Musixmatch/umberto-commoncrawl-cased-v1 Musixmatch/umberto-commoncrawl-cased-v1
last 30 days



Contributed by

Musixmatch company
5 team members · 2 models

UmBERTo Commoncrawl Cased

UmBERTo is a Roberta-based Language Model trained on large Italian Corpora and uses two innovative approaches: SentencePiece and Whole Word Masking. Now available at

Marco Lodola, Monument to Umberto Eco, Alessandria 2019


UmBERTo-Commoncrawl-Cased utilizes the Italian subcorpus of OSCAR as training set of the language model. We used deduplicated version of the Italian corpus that consists in 70 GB of plain text data, 210M sentences with 11B words where the sentences have been filtered and shuffled at line level in order to be used for NLP research.

Pre-trained model

Model WWM Cased Tokenizer Vocab Size Train Steps Download
umberto-commoncrawl-cased-v1 YES YES SPM 32K 125k Link

This model was trained with SentencePiece and Whole Word Masking.

Downstream Tasks

These results refers to umberto-commoncrawl-cased model. All details are at Umberto Official Page.

Named Entity Recognition (NER)

Dataset F1 Precision Recall Accuracy
ICAB-EvalITA07 87.565 86.596 88.556 98.690
WikiNER-ITA 92.531 92.509 92.553 99.136

Part of Speech (POS)

Dataset F1 Precision Recall Accuracy
UD_Italian-ISDT 98.870 98.861 98.879 98.977
UD_Italian-ParTUT 98.786 98.812 98.760 98.903


Load UmBERTo with AutoModel, Autotokenizer:

import torch
from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained("Musixmatch/umberto-commoncrawl-cased-v1")
umberto = AutoModel.from_pretrained("Musixmatch/umberto-commoncrawl-cased-v1")

encoded_input = tokenizer.encode("Umberto Eco è stato un grande scrittore")
input_ids = torch.tensor(encoded_input).unsqueeze(0)  # Batch size 1
outputs = umberto(input_ids)
last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output
Predict masked token:
from transformers import pipeline

fill_mask = pipeline(

result = fill_mask("Umberto Eco è <mask> un grande scrittore")
# {'sequence': '<s> Umberto Eco è considerato un grande scrittore</s>', 'score': 0.18599839508533478, 'token': 5032}
# {'sequence': '<s> Umberto Eco è stato un grande scrittore</s>', 'score': 0.17816807329654694, 'token': 471}
# {'sequence': '<s> Umberto Eco è sicuramente un grande scrittore</s>', 'score': 0.16565583646297455, 'token': 2654}
# {'sequence': '<s> Umberto Eco è indubbiamente un grande scrittore</s>', 'score': 0.0932890921831131, 'token': 17908}
# {'sequence': '<s> Umberto Eco è certamente un grande scrittore</s>', 'score': 0.054701317101716995, 'token': 5269}


All of the original datasets are publicly available or were released with the owners' grant. The datasets are all released under a CC0 or CCBY license.

  • UD Italian-ISDT Dataset Github
  • UD Italian-ParTUT Dataset Github
  • I-CAB (Italian Content Annotation Bank), EvalITA Page
  • WIKINER Page , Paper
@inproceedings {magnini2006annotazione,
    title = {Annotazione di contenuti concettuali in un corpus italiano: I - CAB},
    author = {Magnini,Bernardo and Cappelli,Amedeo and Pianta,Emanuele and Speranza,Manuela and Bartalesi Lenzi,V and Sprugnoli,Rachele and Romano,Lorenza and Girardi,Christian and Negri,Matteo},
    booktitle = {Proc.of SILFI 2006},
    year = {2006}
@inproceedings {magnini2006cab,
    title = {I - CAB: the Italian Content Annotation Bank.},
    author = {Magnini,Bernardo and Pianta,Emanuele and Girardi,Christian and Negri,Matteo and Romano,Lorenza and Speranza,Manuela and Lenzi,Valentina Bartalesi and Sprugnoli,Rachele},
    booktitle = {LREC},
    pages = {963--968},
    year = {2006},
    organization = {Citeseer}


Loreto Parisi: loreto at musixmatch dot com, loretoparisi Simone Francia: simone.francia at musixmatch dot com, simonefrancia Paolo Magnani: paul.magnani95 at gmail dot com, paulthemagno

About Musixmatch AI

Musxmatch Ai mac app icon-128 We do Machine Learning and Artificial Intelligence @musixmatch Follow us on Twitter Github