Keras model with ruBERT conversational embedder for Sentiment Analysis
Russian texts sentiment classification.
Model trained on Tatyana/ru_sentiment_dataset
Labels meaning
0: NEUTRAL
1: POSITIVE
2: NEGATIVE
How to use
!pip install tensorflow-gpu
!pip install deeppavlov
!python -m deeppavlov install squad_bert
!pip install fasttext
!pip install transformers
!python -m deeppavlov install bert_sentence_embedder
from deeppavlov import build_model
model = build_model(Tatyana/rubert_conversational_cased_sentiment/custom_config.json)
model(["Сегодня хорошая погода", "Я счастлив проводить с тобою время", "Мне нравится эта музыкальная композиция"])
- Downloads last month
- 45
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.