NLP_Summerizer

This model is a fine-tuned version of sseyf/arabic_summarization_tp on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0451
  • Rouge1: 0.179
  • Rouge2: 0.0698
  • Rougel: 0.1786
  • Rougelsum: 0.1783
  • Gen Len: 18.8103

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
0.1625 1.0 3351 0.0636 0.1722 0.0625 0.1723 0.1719 18.7864
0.1107 2.0 6702 0.0482 0.1816 0.0712 0.1814 0.1808 18.8073
0.09 3.0 10053 0.0451 0.179 0.0698 0.1786 0.1783 18.8103

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
4
Safetensors
Model size
368M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.