KeyError When Loading Custom Model in Transformers Pipeline
I'm trying to use the transformers
library to load a custom model named Mihaiii/Llama-3.1-8B-Omni-abliterated
for text generation, but I'm encountering a KeyError
. Below are the details of my issue.
Steps Taken
I imported the necessary libraries and attempted to create a text generation pipeline with the specified model.
from transformers import pipeline messages = [ {"role": "user", "content": "Who are you?"}, ] pipe = pipeline("text-generation", model="Mihaiii/Llama-3.1-8B-Omni-abliterated", trust_remote_code=True) response = pipe(messages)
Error Message
When I run the code, I receive the following error:
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
Cell In[4], line 7
2 from transformers import pipeline
4 messages = [
5 {"role": "user", "content": "Who are you?"},
6 ]
----> 7 pipe = pipeline("text-generation", model="Mihaiii/Llama-3.1-8B-Omni-abliterated", trust_remote_code=True)
8 pipe(messages)
File ~\AppData\Roaming\Python\Python311\site-packages\transformers\pipelines\__init__.py:724, in pipeline(task, model, config, tokenizer, feature_extractor, image_processor, framework, revision, use_fast, token, device, device_map, torch_dtype, trust_remote_code, model_kwargs, pipeline_class, **kwargs)
722 hub_kwargs["_commit_hash"] = config._commit_hash
723 elif config is None and isinstance(model, str):
--> 724 config = AutoConfig.from_pretrained(model, _from_pipeline=task, **hub_kwargs, **model_kwargs)
725 hub_kwargs["_commit_hash"] = config._commit_hash
727 custom_tasks = {}
File ~\AppData\Roaming\Python\Python311\site-packages\transformers\models\auto\configuration_auto.py:1022, in AutoConfig.from_pretrained(cls, pretrained_model_name_or_path, **kwargs)
1020 return config_class.from_pretrained(pretrained_model_name_or_path, **kwargs)
1021 elif "model_type" in config_dict:
-> 1022 config_class = CONFIG_MAPPING[config_dict["model_type"]]
1023 return config_class.from_dict(config_dict, **unused_kwargs)
1024 else:
1025 # Fallback: use pattern matching on the string.
1026 # We go from longer names to shorter names to catch roberta before bert (for instance)
File ~\AppData\Roaming\Python\Python311\site-packages\transformers\models\auto\configuration_auto.py:723, in _LazyConfigMapping.__getitem__(self, key)
721 return self._extra_content[key]
722 if key not in self._mapping:
--> 723 raise KeyError(key)
724 value = self._mapping[key]
725 module_name = model_type_to_module_name(key)
KeyError: 'omni_speech2s_llama'
This indicates that there is an issue related to the model type when attempting to load it.
Environment Details
- Transformers version: 4.21.1
- Python version: 3.11.0
What I've Tried
- I ensured that the model name is spelled correctly and is available on the Hugging Face Model Hub.
- I attempted to load a different model (e.g.,
"gpt2"
) to verify that thepipeline
function is working correctly.
Request for Help
Can anyone help me diagnose why I'm getting this KeyError
when loading the specified model, or suggest how I can resolve this issue?
Hello!
This is an adaptation of https://huggingface.co/ICTNLP/Llama-3.1-8B-Omni, which has its own code for inference.
In order to use this model, follow the steps mentioned here: https://github.com/ictnlp/LLaMA-Omni?tab=readme-ov-file#install .
Please be aware that this model is an experiment only.