sentence-classifiert

This model is a fine-tuned version of dmis-lab/biobert-v1.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3410
  • Precision: 0.9085
  • Recall: 0.9068
  • Accuracy: 0.9072
  • F1: 0.9072

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall Accuracy F1
No log 1.0 154 0.4158 0.8549 0.8445 0.8438 0.8443
No log 2.0 308 0.3426 0.8875 0.8804 0.8796 0.8787
No log 3.0 462 0.3594 0.8945 0.8856 0.8869 0.8868
0.3638 4.0 616 0.3302 0.9034 0.9008 0.9015 0.9014
0.3638 5.0 770 0.3410 0.9085 0.9068 0.9072 0.9072

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
16
Safetensors
Model size
108M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Meli101/sentence-classifiert

Finetuned
(74)
this model