Edit model card

w2v2-base-pretrained_lr5e-5_at0.8_da0.9

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3151
  • Wer: 0.1807

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
18.3155 6.1 250 3.8850 1.0
3.2773 12.2 500 3.1874 1.0
3.0747 18.29 750 3.0519 1.0
1.8747 24.39 1000 1.0181 0.5229
0.2774 30.49 1250 1.5081 0.2191
0.1428 36.59 1500 1.5603 0.2067
0.0989 42.68 1750 1.6293 0.1999
0.0748 48.78 2000 1.9993 0.1978
0.0584 54.88 2250 2.0658 0.1914
0.0481 60.98 2500 2.1470 0.1845
0.0433 67.07 2750 2.2501 0.1833
0.038 73.17 3000 2.1957 0.1892
0.0331 79.27 3250 2.2906 0.1845
0.0314 85.37 3500 2.3224 0.1841
0.0279 91.46 3750 2.3041 0.1828
0.0267 97.56 4000 2.3151 0.1807

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.0.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
5
Safetensors
Model size
94.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MelanieKoe/w2v2-base-pretrained_lr5e-5_at0.8_da0.9

Finetuned
(650)
this model