A2C Agent playing PandaPickAndPlace-v3
This is a trained model of a A2C agent playing PandaPickAndPlace-v3 using the stable-baselines3 library.
Usage (with Stable-baselines3)
TODO: Add your code
%%capture
!apt install python-opengl
!apt install ffmpeg
!apt install xvfb
!pip3 install pyvirtualdisplay
from pyvirtualdisplay import Display
virtual_display = Display(visible=0, size=(1400, 900))
virtual_display.start()
!pip install stable-baselines3[extra]
!pip install gymnasium
!pip install huggingface_sb3
!pip install huggingface_hub
!pip install panda_gym
import os
import gymnasium as gym
import panda_gym
from stable_baselines3 import A2C
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.vec_env import DummyVecEnv, VecNormalize
from stable_baselines3.common.env_util import make_vec_env
env_id = "PandaPickAndPlace-v3"
env = gym.make(env_id)
env = make_vec_env(env_id, n_envs=4)
env = VecNormalize(env, clip_obs = 10)
model = A2C("MultiInputPolicy", env, verbose=1)
model.learn(1_000_000)
model.save("a2c-PandaPickAndPlace-v3")
env.save("vec_normalize.pkl")
from stable_baselines3.common.vec_env import DummyVecEnv, VecNormalize
# Load the saved statistics
eval_env = DummyVecEnv([lambda: gym.make("PandaPickAndPlace-v3")])
eval_env = VecNormalize.load("vec_normalize.pkl", eval_env)
# We need to override the render_mode
eval_env.render_mode = "rgb_array"
# do not update them at test time
eval_env.training = False
# reward normalization is not needed at test time
eval_env.norm_reward = False
# Load the agent
model = A2C.load("a2c-PandaPickAndPlace-v3")
mean_reward, std_reward = evaluate_policy(model, eval_env)
print(f"Mean reward = {mean_reward:.2f} +/- {std_reward:.2f}")
...
- Downloads last month
- 1
Evaluation results
- mean_reward on PandaPickAndPlace-v3self-reported-50.00 +/- 0.00