Update README.md
#1
by
MaziyarPanahi
- opened
README.md
CHANGED
@@ -8,4 +8,390 @@ tags:
|
|
8 |
|
9 |
Merge of top 7B models with DARE method
|
10 |
|
11 |
-
> mergekit is a toolkit for merging pre-trained language models. mergekit uses an out-of-core approach to perform unreasonably elaborate merges in resource-constrained situations. Merges can be run entirely on CPU or accelerated with as little as 8 GB of VRAM. Many merging algorithms are supported, with more coming as they catch my attention.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
Merge of top 7B models with DARE method
|
10 |
|
11 |
+
> mergekit is a toolkit for merging pre-trained language models. mergekit uses an out-of-core approach to perform unreasonably elaborate merges in resource-constrained situations. Merges can be run entirely on CPU or accelerated with as little as 8 GB of VRAM. Many merging algorithms are supported, with more coming as they catch my attention.
|
12 |
+
|
13 |
+
## Eval
|
14 |
+
|
15 |
+
```python
|
16 |
+
{
|
17 |
+
"all": {
|
18 |
+
"acc": 0.6547370286177235,
|
19 |
+
"acc_stderr": 0.03204709242170183,
|
20 |
+
"acc_norm": 0.6537337854798912,
|
21 |
+
"acc_norm_stderr": 0.03272317883588649,
|
22 |
+
"mc1": 0.5189718482252142,
|
23 |
+
"mc1_stderr": 0.01749089640576236,
|
24 |
+
"mc2": 0.6631825155680797,
|
25 |
+
"mc2_stderr": 0.01527641053841743
|
26 |
+
},
|
27 |
+
"harness|arc:challenge|25": {
|
28 |
+
"acc": 0.6953924914675768,
|
29 |
+
"acc_stderr": 0.013449522109932485,
|
30 |
+
"acc_norm": 0.7175767918088737,
|
31 |
+
"acc_norm_stderr": 0.013155456884097225
|
32 |
+
},
|
33 |
+
"harness|hellaswag|10": {
|
34 |
+
"acc": 0.7120095598486357,
|
35 |
+
"acc_stderr": 0.004519011688417168,
|
36 |
+
"acc_norm": 0.8820952001593309,
|
37 |
+
"acc_norm_stderr": 0.003218362717491129
|
38 |
+
},
|
39 |
+
"harness|hendrycksTest-abstract_algebra|5": {
|
40 |
+
"acc": 0.33,
|
41 |
+
"acc_stderr": 0.047258156262526045,
|
42 |
+
"acc_norm": 0.33,
|
43 |
+
"acc_norm_stderr": 0.047258156262526045
|
44 |
+
},
|
45 |
+
"harness|hendrycksTest-anatomy|5": {
|
46 |
+
"acc": 0.6296296296296297,
|
47 |
+
"acc_stderr": 0.041716541613545426,
|
48 |
+
"acc_norm": 0.6296296296296297,
|
49 |
+
"acc_norm_stderr": 0.041716541613545426
|
50 |
+
},
|
51 |
+
"harness|hendrycksTest-astronomy|5": {
|
52 |
+
"acc": 0.7105263157894737,
|
53 |
+
"acc_stderr": 0.03690677986137283,
|
54 |
+
"acc_norm": 0.7105263157894737,
|
55 |
+
"acc_norm_stderr": 0.03690677986137283
|
56 |
+
},
|
57 |
+
"harness|hendrycksTest-business_ethics|5": {
|
58 |
+
"acc": 0.64,
|
59 |
+
"acc_stderr": 0.04824181513244218,
|
60 |
+
"acc_norm": 0.64,
|
61 |
+
"acc_norm_stderr": 0.04824181513244218
|
62 |
+
},
|
63 |
+
"harness|hendrycksTest-clinical_knowledge|5": {
|
64 |
+
"acc": 0.7056603773584905,
|
65 |
+
"acc_stderr": 0.02804918631569525,
|
66 |
+
"acc_norm": 0.7056603773584905,
|
67 |
+
"acc_norm_stderr": 0.02804918631569525
|
68 |
+
},
|
69 |
+
"harness|hendrycksTest-college_biology|5": {
|
70 |
+
"acc": 0.7638888888888888,
|
71 |
+
"acc_stderr": 0.03551446610810826,
|
72 |
+
"acc_norm": 0.7638888888888888,
|
73 |
+
"acc_norm_stderr": 0.03551446610810826
|
74 |
+
},
|
75 |
+
"harness|hendrycksTest-college_chemistry|5": {
|
76 |
+
"acc": 0.48,
|
77 |
+
"acc_stderr": 0.050211673156867795,
|
78 |
+
"acc_norm": 0.48,
|
79 |
+
"acc_norm_stderr": 0.050211673156867795
|
80 |
+
},
|
81 |
+
"harness|hendrycksTest-college_computer_science|5": {
|
82 |
+
"acc": 0.54,
|
83 |
+
"acc_stderr": 0.05009082659620333,
|
84 |
+
"acc_norm": 0.54,
|
85 |
+
"acc_norm_stderr": 0.05009082659620333
|
86 |
+
},
|
87 |
+
"harness|hendrycksTest-college_mathematics|5": {
|
88 |
+
"acc": 0.31,
|
89 |
+
"acc_stderr": 0.04648231987117316,
|
90 |
+
"acc_norm": 0.31,
|
91 |
+
"acc_norm_stderr": 0.04648231987117316
|
92 |
+
},
|
93 |
+
"harness|hendrycksTest-college_medicine|5": {
|
94 |
+
"acc": 0.6705202312138728,
|
95 |
+
"acc_stderr": 0.03583901754736411,
|
96 |
+
"acc_norm": 0.6705202312138728,
|
97 |
+
"acc_norm_stderr": 0.03583901754736411
|
98 |
+
},
|
99 |
+
"harness|hendrycksTest-college_physics|5": {
|
100 |
+
"acc": 0.4215686274509804,
|
101 |
+
"acc_stderr": 0.04913595201274498,
|
102 |
+
"acc_norm": 0.4215686274509804,
|
103 |
+
"acc_norm_stderr": 0.04913595201274498
|
104 |
+
},
|
105 |
+
"harness|hendrycksTest-computer_security|5": {
|
106 |
+
"acc": 0.78,
|
107 |
+
"acc_stderr": 0.04163331998932263,
|
108 |
+
"acc_norm": 0.78,
|
109 |
+
"acc_norm_stderr": 0.04163331998932263
|
110 |
+
},
|
111 |
+
"harness|hendrycksTest-conceptual_physics|5": {
|
112 |
+
"acc": 0.5787234042553191,
|
113 |
+
"acc_stderr": 0.03227834510146268,
|
114 |
+
"acc_norm": 0.5787234042553191,
|
115 |
+
"acc_norm_stderr": 0.03227834510146268
|
116 |
+
},
|
117 |
+
"harness|hendrycksTest-econometrics|5": {
|
118 |
+
"acc": 0.5,
|
119 |
+
"acc_stderr": 0.047036043419179864,
|
120 |
+
"acc_norm": 0.5,
|
121 |
+
"acc_norm_stderr": 0.047036043419179864
|
122 |
+
},
|
123 |
+
"harness|hendrycksTest-electrical_engineering|5": {
|
124 |
+
"acc": 0.5586206896551724,
|
125 |
+
"acc_stderr": 0.04137931034482758,
|
126 |
+
"acc_norm": 0.5586206896551724,
|
127 |
+
"acc_norm_stderr": 0.04137931034482758
|
128 |
+
},
|
129 |
+
"harness|hendrycksTest-elementary_mathematics|5": {
|
130 |
+
"acc": 0.42857142857142855,
|
131 |
+
"acc_stderr": 0.02548718714785938,
|
132 |
+
"acc_norm": 0.42857142857142855,
|
133 |
+
"acc_norm_stderr": 0.02548718714785938
|
134 |
+
},
|
135 |
+
"harness|hendrycksTest-formal_logic|5": {
|
136 |
+
"acc": 0.47619047619047616,
|
137 |
+
"acc_stderr": 0.04467062628403273,
|
138 |
+
"acc_norm": 0.47619047619047616,
|
139 |
+
"acc_norm_stderr": 0.04467062628403273
|
140 |
+
},
|
141 |
+
"harness|hendrycksTest-global_facts|5": {
|
142 |
+
"acc": 0.33,
|
143 |
+
"acc_stderr": 0.04725815626252604,
|
144 |
+
"acc_norm": 0.33,
|
145 |
+
"acc_norm_stderr": 0.04725815626252604
|
146 |
+
},
|
147 |
+
"harness|hendrycksTest-high_school_biology|5": {
|
148 |
+
"acc": 0.7903225806451613,
|
149 |
+
"acc_stderr": 0.023157879349083525,
|
150 |
+
"acc_norm": 0.7903225806451613,
|
151 |
+
"acc_norm_stderr": 0.023157879349083525
|
152 |
+
},
|
153 |
+
"harness|hendrycksTest-high_school_chemistry|5": {
|
154 |
+
"acc": 0.4876847290640394,
|
155 |
+
"acc_stderr": 0.035169204442208966,
|
156 |
+
"acc_norm": 0.4876847290640394,
|
157 |
+
"acc_norm_stderr": 0.035169204442208966
|
158 |
+
},
|
159 |
+
"harness|hendrycksTest-high_school_computer_science|5": {
|
160 |
+
"acc": 0.68,
|
161 |
+
"acc_stderr": 0.04688261722621505,
|
162 |
+
"acc_norm": 0.68,
|
163 |
+
"acc_norm_stderr": 0.04688261722621505
|
164 |
+
},
|
165 |
+
"harness|hendrycksTest-high_school_european_history|5": {
|
166 |
+
"acc": 0.7878787878787878,
|
167 |
+
"acc_stderr": 0.03192271569548301,
|
168 |
+
"acc_norm": 0.7878787878787878,
|
169 |
+
"acc_norm_stderr": 0.03192271569548301
|
170 |
+
},
|
171 |
+
"harness|hendrycksTest-high_school_geography|5": {
|
172 |
+
"acc": 0.797979797979798,
|
173 |
+
"acc_stderr": 0.02860620428922987,
|
174 |
+
"acc_norm": 0.797979797979798,
|
175 |
+
"acc_norm_stderr": 0.02860620428922987
|
176 |
+
},
|
177 |
+
"harness|hendrycksTest-high_school_government_and_politics|5": {
|
178 |
+
"acc": 0.9015544041450777,
|
179 |
+
"acc_stderr": 0.021500249576033456,
|
180 |
+
"acc_norm": 0.9015544041450777,
|
181 |
+
"acc_norm_stderr": 0.021500249576033456
|
182 |
+
},
|
183 |
+
"harness|hendrycksTest-high_school_macroeconomics|5": {
|
184 |
+
"acc": 0.6666666666666666,
|
185 |
+
"acc_stderr": 0.023901157979402538,
|
186 |
+
"acc_norm": 0.6666666666666666,
|
187 |
+
"acc_norm_stderr": 0.023901157979402538
|
188 |
+
},
|
189 |
+
"harness|hendrycksTest-high_school_mathematics|5": {
|
190 |
+
"acc": 0.35185185185185186,
|
191 |
+
"acc_stderr": 0.029116617606083008,
|
192 |
+
"acc_norm": 0.35185185185185186,
|
193 |
+
"acc_norm_stderr": 0.029116617606083008
|
194 |
+
},
|
195 |
+
"harness|hendrycksTest-high_school_microeconomics|5": {
|
196 |
+
"acc": 0.6722689075630253,
|
197 |
+
"acc_stderr": 0.03048991141767323,
|
198 |
+
"acc_norm": 0.6722689075630253,
|
199 |
+
"acc_norm_stderr": 0.03048991141767323
|
200 |
+
},
|
201 |
+
"harness|hendrycksTest-high_school_physics|5": {
|
202 |
+
"acc": 0.36423841059602646,
|
203 |
+
"acc_stderr": 0.03929111781242742,
|
204 |
+
"acc_norm": 0.36423841059602646,
|
205 |
+
"acc_norm_stderr": 0.03929111781242742
|
206 |
+
},
|
207 |
+
"harness|hendrycksTest-high_school_psychology|5": {
|
208 |
+
"acc": 0.8440366972477065,
|
209 |
+
"acc_stderr": 0.015555802713590167,
|
210 |
+
"acc_norm": 0.8440366972477065,
|
211 |
+
"acc_norm_stderr": 0.015555802713590167
|
212 |
+
},
|
213 |
+
"harness|hendrycksTest-high_school_statistics|5": {
|
214 |
+
"acc": 0.5092592592592593,
|
215 |
+
"acc_stderr": 0.034093869469927006,
|
216 |
+
"acc_norm": 0.5092592592592593,
|
217 |
+
"acc_norm_stderr": 0.034093869469927006
|
218 |
+
},
|
219 |
+
"harness|hendrycksTest-high_school_us_history|5": {
|
220 |
+
"acc": 0.8333333333333334,
|
221 |
+
"acc_stderr": 0.026156867523931045,
|
222 |
+
"acc_norm": 0.8333333333333334,
|
223 |
+
"acc_norm_stderr": 0.026156867523931045
|
224 |
+
},
|
225 |
+
"harness|hendrycksTest-high_school_world_history|5": {
|
226 |
+
"acc": 0.7848101265822784,
|
227 |
+
"acc_stderr": 0.02675082699467618,
|
228 |
+
"acc_norm": 0.7848101265822784,
|
229 |
+
"acc_norm_stderr": 0.02675082699467618
|
230 |
+
},
|
231 |
+
"harness|hendrycksTest-human_aging|5": {
|
232 |
+
"acc": 0.6905829596412556,
|
233 |
+
"acc_stderr": 0.03102441174057221,
|
234 |
+
"acc_norm": 0.6905829596412556,
|
235 |
+
"acc_norm_stderr": 0.03102441174057221
|
236 |
+
},
|
237 |
+
"harness|hendrycksTest-human_sexuality|5": {
|
238 |
+
"acc": 0.7786259541984732,
|
239 |
+
"acc_stderr": 0.03641297081313729,
|
240 |
+
"acc_norm": 0.7786259541984732,
|
241 |
+
"acc_norm_stderr": 0.03641297081313729
|
242 |
+
},
|
243 |
+
"harness|hendrycksTest-international_law|5": {
|
244 |
+
"acc": 0.7933884297520661,
|
245 |
+
"acc_stderr": 0.03695980128098824,
|
246 |
+
"acc_norm": 0.7933884297520661,
|
247 |
+
"acc_norm_stderr": 0.03695980128098824
|
248 |
+
},
|
249 |
+
"harness|hendrycksTest-jurisprudence|5": {
|
250 |
+
"acc": 0.7870370370370371,
|
251 |
+
"acc_stderr": 0.0395783547198098,
|
252 |
+
"acc_norm": 0.7870370370370371,
|
253 |
+
"acc_norm_stderr": 0.0395783547198098
|
254 |
+
},
|
255 |
+
"harness|hendrycksTest-logical_fallacies|5": {
|
256 |
+
"acc": 0.7730061349693251,
|
257 |
+
"acc_stderr": 0.03291099578615769,
|
258 |
+
"acc_norm": 0.7730061349693251,
|
259 |
+
"acc_norm_stderr": 0.03291099578615769
|
260 |
+
},
|
261 |
+
"harness|hendrycksTest-machine_learning|5": {
|
262 |
+
"acc": 0.45535714285714285,
|
263 |
+
"acc_stderr": 0.047268355537191,
|
264 |
+
"acc_norm": 0.45535714285714285,
|
265 |
+
"acc_norm_stderr": 0.047268355537191
|
266 |
+
},
|
267 |
+
"harness|hendrycksTest-management|5": {
|
268 |
+
"acc": 0.7766990291262136,
|
269 |
+
"acc_stderr": 0.04123553189891431,
|
270 |
+
"acc_norm": 0.7766990291262136,
|
271 |
+
"acc_norm_stderr": 0.04123553189891431
|
272 |
+
},
|
273 |
+
"harness|hendrycksTest-marketing|5": {
|
274 |
+
"acc": 0.8760683760683761,
|
275 |
+
"acc_stderr": 0.021586494001281376,
|
276 |
+
"acc_norm": 0.8760683760683761,
|
277 |
+
"acc_norm_stderr": 0.021586494001281376
|
278 |
+
},
|
279 |
+
"harness|hendrycksTest-medical_genetics|5": {
|
280 |
+
"acc": 0.72,
|
281 |
+
"acc_stderr": 0.045126085985421276,
|
282 |
+
"acc_norm": 0.72,
|
283 |
+
"acc_norm_stderr": 0.045126085985421276
|
284 |
+
},
|
285 |
+
"harness|hendrycksTest-miscellaneous|5": {
|
286 |
+
"acc": 0.8275862068965517,
|
287 |
+
"acc_stderr": 0.013507943909371798,
|
288 |
+
"acc_norm": 0.8275862068965517,
|
289 |
+
"acc_norm_stderr": 0.013507943909371798
|
290 |
+
},
|
291 |
+
"harness|hendrycksTest-moral_disputes|5": {
|
292 |
+
"acc": 0.7427745664739884,
|
293 |
+
"acc_stderr": 0.02353292543104429,
|
294 |
+
"acc_norm": 0.7427745664739884,
|
295 |
+
"acc_norm_stderr": 0.02353292543104429
|
296 |
+
},
|
297 |
+
"harness|hendrycksTest-moral_scenarios|5": {
|
298 |
+
"acc": 0.4312849162011173,
|
299 |
+
"acc_stderr": 0.016563829399047707,
|
300 |
+
"acc_norm": 0.4312849162011173,
|
301 |
+
"acc_norm_stderr": 0.016563829399047707
|
302 |
+
},
|
303 |
+
"harness|hendrycksTest-nutrition|5": {
|
304 |
+
"acc": 0.7320261437908496,
|
305 |
+
"acc_stderr": 0.025360603796242557,
|
306 |
+
"acc_norm": 0.7320261437908496,
|
307 |
+
"acc_norm_stderr": 0.025360603796242557
|
308 |
+
},
|
309 |
+
"harness|hendrycksTest-philosophy|5": {
|
310 |
+
"acc": 0.7170418006430869,
|
311 |
+
"acc_stderr": 0.02558306248998481,
|
312 |
+
"acc_norm": 0.7170418006430869,
|
313 |
+
"acc_norm_stderr": 0.02558306248998481
|
314 |
+
},
|
315 |
+
"harness|hendrycksTest-prehistory|5": {
|
316 |
+
"acc": 0.7438271604938271,
|
317 |
+
"acc_stderr": 0.024288533637726095,
|
318 |
+
"acc_norm": 0.7438271604938271,
|
319 |
+
"acc_norm_stderr": 0.024288533637726095
|
320 |
+
},
|
321 |
+
"harness|hendrycksTest-professional_accounting|5": {
|
322 |
+
"acc": 0.46808510638297873,
|
323 |
+
"acc_stderr": 0.029766675075873866,
|
324 |
+
"acc_norm": 0.46808510638297873,
|
325 |
+
"acc_norm_stderr": 0.029766675075873866
|
326 |
+
},
|
327 |
+
"harness|hendrycksTest-professional_law|5": {
|
328 |
+
"acc": 0.4726205997392438,
|
329 |
+
"acc_stderr": 0.012751075788015055,
|
330 |
+
"acc_norm": 0.4726205997392438,
|
331 |
+
"acc_norm_stderr": 0.012751075788015055
|
332 |
+
},
|
333 |
+
"harness|hendrycksTest-professional_medicine|5": {
|
334 |
+
"acc": 0.6801470588235294,
|
335 |
+
"acc_stderr": 0.02833295951403121,
|
336 |
+
"acc_norm": 0.6801470588235294,
|
337 |
+
"acc_norm_stderr": 0.02833295951403121
|
338 |
+
},
|
339 |
+
"harness|hendrycksTest-professional_psychology|5": {
|
340 |
+
"acc": 0.6748366013071896,
|
341 |
+
"acc_stderr": 0.018950886770806315,
|
342 |
+
"acc_norm": 0.6748366013071896,
|
343 |
+
"acc_norm_stderr": 0.018950886770806315
|
344 |
+
},
|
345 |
+
"harness|hendrycksTest-public_relations|5": {
|
346 |
+
"acc": 0.6909090909090909,
|
347 |
+
"acc_stderr": 0.044262946482000985,
|
348 |
+
"acc_norm": 0.6909090909090909,
|
349 |
+
"acc_norm_stderr": 0.044262946482000985
|
350 |
+
},
|
351 |
+
"harness|hendrycksTest-security_studies|5": {
|
352 |
+
"acc": 0.7306122448979592,
|
353 |
+
"acc_stderr": 0.02840125202902294,
|
354 |
+
"acc_norm": 0.7306122448979592,
|
355 |
+
"acc_norm_stderr": 0.02840125202902294
|
356 |
+
},
|
357 |
+
"harness|hendrycksTest-sociology|5": {
|
358 |
+
"acc": 0.835820895522388,
|
359 |
+
"acc_stderr": 0.026193923544454115,
|
360 |
+
"acc_norm": 0.835820895522388,
|
361 |
+
"acc_norm_stderr": 0.026193923544454115
|
362 |
+
},
|
363 |
+
"harness|hendrycksTest-us_foreign_policy|5": {
|
364 |
+
"acc": 0.85,
|
365 |
+
"acc_stderr": 0.03588702812826371,
|
366 |
+
"acc_norm": 0.85,
|
367 |
+
"acc_norm_stderr": 0.03588702812826371
|
368 |
+
},
|
369 |
+
"harness|hendrycksTest-virology|5": {
|
370 |
+
"acc": 0.5602409638554217,
|
371 |
+
"acc_stderr": 0.03864139923699122,
|
372 |
+
"acc_norm": 0.5602409638554217,
|
373 |
+
"acc_norm_stderr": 0.03864139923699122
|
374 |
+
},
|
375 |
+
"harness|hendrycksTest-world_religions|5": {
|
376 |
+
"acc": 0.8362573099415205,
|
377 |
+
"acc_stderr": 0.028380919596145866,
|
378 |
+
"acc_norm": 0.8362573099415205,
|
379 |
+
"acc_norm_stderr": 0.028380919596145866
|
380 |
+
},
|
381 |
+
"harness|truthfulqa:mc|0": {
|
382 |
+
"mc1": 0.5189718482252142,
|
383 |
+
"mc1_stderr": 0.01749089640576236,
|
384 |
+
"mc2": 0.6631825155680797,
|
385 |
+
"mc2_stderr": 0.01527641053841743
|
386 |
+
},
|
387 |
+
"harness|winogrande|5": {
|
388 |
+
"acc": 0.8437253354380426,
|
389 |
+
"acc_stderr": 0.01020535179187352
|
390 |
+
},
|
391 |
+
"harness|gsm8k|5": {
|
392 |
+
"acc": 0.7172100075815011,
|
393 |
+
"acc_stderr": 0.012405020417873619
|
394 |
+
}
|
395 |
+
}
|
396 |
+
|
397 |
+
```
|