poem_sentiment

This model is a fine-tuned version of roberta-base on the poem_sentiment dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4747
  • 0: {'precision': 0.8571428571428571, 'recall': 0.9473684210526315, 'f1-score': 0.9, 'support': 19}
  • 1: {'precision': 0.7222222222222222, 'recall': 0.7647058823529411, 'f1-score': 0.7428571428571428, 'support': 17}
  • 2: {'precision': 0.9393939393939394, 'recall': 0.8985507246376812, 'f1-score': 0.9185185185185185, 'support': 69}
  • Accuracy: 0.8857
  • Macro avg: {'precision': 0.8395863395863395, 'recall': 0.8702083426810846, 'f1-score': 0.8537918871252205, 'support': 105}
  • Weighted avg: {'precision': 0.8893492750635609, 'recall': 0.8857142857142857, 'f1-score': 0.8867271352985638, 'support': 105}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss 0 1 2 Accuracy Macro avg Weighted avg
1.0922 1.0 112 0.8825 {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 19} {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 17} {'precision': 0.6571428571428571, 'recall': 1.0, 'f1-score': 0.7931034482758621, 'support': 69} 0.6571 {'precision': 0.21904761904761905, 'recall': 0.3333333333333333, 'f1-score': 0.26436781609195403, 'support': 105} {'precision': 0.43183673469387757, 'recall': 0.6571428571428571, 'f1-score': 0.5211822660098522, 'support': 105}
0.6877 2.0 224 0.4747 {'precision': 0.8571428571428571, 'recall': 0.9473684210526315, 'f1-score': 0.9, 'support': 19} {'precision': 0.7222222222222222, 'recall': 0.7647058823529411, 'f1-score': 0.7428571428571428, 'support': 17} {'precision': 0.9393939393939394, 'recall': 0.8985507246376812, 'f1-score': 0.9185185185185185, 'support': 69} 0.8857 {'precision': 0.8395863395863395, 'recall': 0.8702083426810846, 'f1-score': 0.8537918871252205, 'support': 105} {'precision': 0.8893492750635609, 'recall': 0.8857142857142857, 'f1-score': 0.8867271352985638, 'support': 105}
0.5299 3.0 336 0.6595 {'precision': 0.8, 'recall': 0.8421052631578947, 'f1-score': 0.8205128205128205, 'support': 19} {'precision': 1.0, 'recall': 0.4117647058823529, 'f1-score': 0.5833333333333334, 'support': 17} {'precision': 0.8461538461538461, 'recall': 0.9565217391304348, 'f1-score': 0.8979591836734695, 'support': 69} 0.8476 {'precision': 0.882051282051282, 'recall': 0.7367972360568942, 'f1-score': 0.7672684458398744, 'support': 105} {'precision': 0.8627106227106227, 'recall': 0.8476190476190476, 'f1-score': 0.8330056564750442, 'support': 105}
0.9027 4.0 448 0.5981 {'precision': 1.0, 'recall': 0.7368421052631579, 'f1-score': 0.8484848484848484, 'support': 19} {'precision': 0.7333333333333333, 'recall': 0.6470588235294118, 'f1-score': 0.6875, 'support': 17} {'precision': 0.868421052631579, 'recall': 0.9565217391304348, 'f1-score': 0.9103448275862069, 'support': 69} 0.8667 {'precision': 0.867251461988304, 'recall': 0.7801408893076681, 'f1-score': 0.8154432253570185, 'support': 105} {'precision': 0.870359231411863, 'recall': 0.8666666666666667, 'f1-score': 0.863071478330099, 'support': 105}
0.4588 5.0 560 0.7815 {'precision': 0.7727272727272727, 'recall': 0.8947368421052632, 'f1-score': 0.8292682926829269, 'support': 19} {'precision': 0.6470588235294118, 'recall': 0.6470588235294118, 'f1-score': 0.6470588235294118, 'support': 17} {'precision': 0.8939393939393939, 'recall': 0.855072463768116, 'f1-score': 0.8740740740740741, 'support': 69} 0.8286 {'precision': 0.7712418300653595, 'recall': 0.7989560431342637, 'f1-score': 0.7834670634288043, 'support': 105} {'precision': 0.832034632034632, 'recall': 0.8285714285714286, 'f1-score': 0.8292115111627308, 'support': 105}

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
22
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MaxT/poem_sentiment

Finetuned
(1378)
this model

Dataset used to train MaxT/poem_sentiment

Evaluation results