Edit model card

GitHub

Marqo-FashionCLIP Model Card

Marqo-FashionCLIP and Marqo-FashionSigLIP outperform the previous state-of-the-art fashion CLIP models (see results below). Marqo-FashionCLIP leverages Generalised Contrastive Learning (GCL) which allows the model to be trained on not just text descriptions but also categories, style, colors, materials, keywords and fine-details to provide highly relevant search results on fashion products. The model was fine-tuned from ViT-B-16 (laion2b_s34b_b88k).

Github Page: Marqo-FashionCLIP

Blog: Marqo Blog

Usage

Hugging Face

The model can be loaded with AutoModel by

from transformers import AutoModel, AutoProcessor
model = AutoModel.from_pretrained('Marqo/marqo-fashionCLIP', trust_remote_code=True)
processor = AutoProcessor.from_pretrained('Marqo/marqo-fashionCLIP', trust_remote_code=True)

import torch
from PIL import Image

image = [Image.open("docs/fashion-hippo.png")]
text = ["a hat", "a t-shirt", "shoes"]
processed = processor(text=text, images=image, padding='max_length', return_tensors="pt")

with torch.no_grad():
    image_features = model.get_image_features(processed['pixel_values'], normalize=True)
    text_features = model.get_text_features(processed['input_ids'], normalize=True)

    text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)

print("Label probs:", text_probs)
# [0.99990773, 0.00006382, 0.00002847]

OpenCLIP

The model can be seamlessly used with OpenCLIP by

import open_clip
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionCLIP')
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionCLIP')

import torch
from PIL import Image

image = preprocess_val(Image.open("docs/fashion-hippo.png")).unsqueeze(0)
text = tokenizer(["a hat", "a t-shirt", "shoes"])

with torch.no_grad(), torch.cuda.amp.autocast():
    image_features = model.encode_image(image, normalize=True)
    text_features = model.encode_text(text, normalize=True)

    text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)

print("Label probs:", text_probs)
# [0.9998498302475922, 0.000119267522939106, 0.000030902229468640687]

Transformers.js

You can also run the model in JavaScript with the Transformers.js library.

First, install it from NPM using:

npm i @huggingface/transformers

Then, compute embeddings as follows:

import { CLIPTextModelWithProjection, CLIPVisionModelWithProjection, AutoTokenizer, AutoProcessor, RawImage, softmax, dot } from '@huggingface/transformers';

const model_id = 'Marqo/marqo-fashionCLIP';

// Load tokenizer and text model
const tokenizer = await AutoTokenizer.from_pretrained(model_id);
const text_model = await CLIPTextModelWithProjection.from_pretrained(model_id);

// Load processor and vision model
const processor = await AutoProcessor.from_pretrained(model_id);
const vision_model = await CLIPVisionModelWithProjection.from_pretrained(model_id);

// Run tokenization
const texts = ['a hat', 'a t-shirt', 'shoes'];
const text_inputs = tokenizer(texts, { padding: 'max_length', truncation: true });

// Compute text embeddings
const { text_embeds } = await text_model(text_inputs);

// Read image and run processor
const image = await RawImage.read('https://raw.githubusercontent.com/marqo-ai/marqo-FashionCLIP/main/docs/fashion-hippo.png');
const image_inputs = await processor(image);

// Compute vision embeddings
const { image_embeds } = await vision_model(image_inputs);

// Compute similarity scores
const normalized_text_embeds = text_embeds.normalize().tolist();
const normalized_image_embeds = image_embeds.normalize().tolist()[0];

const text_probs = softmax(normalized_text_embeds.map((text_embed) => 
    100.0 * dot(normalized_image_embeds, text_embed)
));
console.log(text_probs);
// [0.9998498302475922, 0.000119267522939106, 0.000030902229468640687]

Benchmark Results

Average evaluation results on 6 public multimodal fashion datasets (Atlas, DeepFashion (In-shop), DeepFashion (Multimodal), Fashion200k, KAGL, and Polyvore) are reported below:

Text-To-Image (Averaged across 6 datasets)

Model AvgRecall Recall@1 Recall@10 MRR
Marqo-FashionCLIP 0.192 0.094 0.290 0.200
FashionCLIP2.0 0.163 0.077 0.249 0.165
OpenFashionCLIP 0.132 0.060 0.204 0.135
ViT-B-16-laion2b_s34b_b88k 0.174 0.088 0.261 0.180

Category-To-Product (Averaged across 5 datasets)

Model AvgP P@1 P@10 MRR
Marqo-FashionCLIP 0.705 0.734 0.676 0.776
FashionCLIP2.0 0.684 0.681 0.686 0.741
OpenFashionCLIP 0.646 0.653 0.639 0.720
ViT-B-16-laion2b_s34b_b88k 0.662 0.673 0.652 0.743

Sub-Category-To-Product (Averaged across 4 datasets)

Model AvgP P@1 P@10 MRR
Marqo-FashionCLIP 0.707 0.747 0.667 0.772
FashionCLIP2.0 0.657 0.676 0.638 0.733
OpenFashionCLIP 0.598 0.619 0.578 0.689
ViT-B-16-laion2b_s34b_b88k 0.638 0.651 0.624 0.712
Downloads last month
13,064
Safetensors
Model size
150M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using Marqo/marqo-fashionCLIP 2

Collection including Marqo/marqo-fashionCLIP