calculator_model_test_second_version
This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1239
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 512
- eval_batch_size: 512
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.4193 | 1.0 | 6 | 2.7303 |
2.3495 | 2.0 | 12 | 1.9121 |
1.7677 | 3.0 | 18 | 1.6227 |
1.6093 | 4.0 | 24 | 1.5830 |
1.5528 | 5.0 | 30 | 1.5309 |
1.5114 | 6.0 | 36 | 1.4526 |
1.4513 | 7.0 | 42 | 1.3988 |
1.4022 | 8.0 | 48 | 1.3442 |
1.3473 | 9.0 | 54 | 1.2809 |
1.2985 | 10.0 | 60 | 1.2159 |
1.2173 | 11.0 | 66 | 1.1870 |
1.1373 | 12.0 | 72 | 1.0899 |
1.0855 | 13.0 | 78 | 1.0270 |
1.04 | 14.0 | 84 | 0.9607 |
1.0274 | 15.0 | 90 | 0.9749 |
0.9975 | 16.0 | 96 | 0.9045 |
0.9274 | 17.0 | 102 | 0.9247 |
0.8963 | 18.0 | 108 | 0.8161 |
0.8767 | 19.0 | 114 | 0.8131 |
0.8764 | 20.0 | 120 | 0.9056 |
0.8763 | 21.0 | 126 | 0.7668 |
0.8097 | 22.0 | 132 | 0.8305 |
0.8 | 23.0 | 138 | 0.7579 |
0.7483 | 24.0 | 144 | 0.7418 |
0.8242 | 25.0 | 150 | 0.7103 |
0.7375 | 26.0 | 156 | 0.6743 |
0.7078 | 27.0 | 162 | 0.6516 |
0.7112 | 28.0 | 168 | 0.7178 |
0.7518 | 29.0 | 174 | 0.7132 |
0.6874 | 30.0 | 180 | 0.6438 |
0.6671 | 31.0 | 186 | 0.6512 |
0.6595 | 32.0 | 192 | 0.6338 |
0.6375 | 33.0 | 198 | 0.5772 |
0.5933 | 34.0 | 204 | 0.5397 |
0.5938 | 35.0 | 210 | 0.5182 |
0.5818 | 36.0 | 216 | 0.5315 |
0.6946 | 37.0 | 222 | 0.9134 |
0.7946 | 38.0 | 228 | 0.7031 |
0.7079 | 39.0 | 234 | 0.6212 |
0.6055 | 40.0 | 240 | 0.5024 |
0.5524 | 41.0 | 246 | 0.5142 |
0.543 | 42.0 | 252 | 0.4946 |
0.5265 | 43.0 | 258 | 0.4820 |
0.5339 | 44.0 | 264 | 0.6029 |
0.5624 | 45.0 | 270 | 0.5800 |
0.5097 | 46.0 | 276 | 0.4858 |
0.5059 | 47.0 | 282 | 0.4554 |
0.4807 | 48.0 | 288 | 0.4538 |
0.4824 | 49.0 | 294 | 0.4248 |
0.4691 | 50.0 | 300 | 0.3919 |
0.5413 | 51.0 | 306 | 0.5179 |
0.5131 | 52.0 | 312 | 0.3809 |
0.4312 | 53.0 | 318 | 0.3955 |
0.4226 | 54.0 | 324 | 0.3597 |
0.4059 | 55.0 | 330 | 0.3501 |
0.3887 | 56.0 | 336 | 0.3281 |
0.3784 | 57.0 | 342 | 0.3294 |
0.3696 | 58.0 | 348 | 0.2937 |
0.3694 | 59.0 | 354 | 0.3153 |
0.3815 | 60.0 | 360 | 0.2878 |
0.3575 | 61.0 | 366 | 0.3236 |
0.3527 | 62.0 | 372 | 0.2940 |
0.3481 | 63.0 | 378 | 0.2703 |
0.3466 | 64.0 | 384 | 0.3331 |
0.4037 | 65.0 | 390 | 0.3615 |
0.363 | 66.0 | 396 | 0.3057 |
0.3374 | 67.0 | 402 | 0.2810 |
0.3256 | 68.0 | 408 | 0.2785 |
0.3206 | 69.0 | 414 | 0.2553 |
0.306 | 70.0 | 420 | 0.2336 |
0.2884 | 71.0 | 426 | 0.2361 |
0.2892 | 72.0 | 432 | 0.2257 |
0.275 | 73.0 | 438 | 0.2237 |
0.2968 | 74.0 | 444 | 0.2405 |
0.2879 | 75.0 | 450 | 0.2139 |
0.2832 | 76.0 | 456 | 0.2139 |
0.2726 | 77.0 | 462 | 0.2174 |
0.2687 | 78.0 | 468 | 0.2037 |
0.2609 | 79.0 | 474 | 0.1833 |
0.2518 | 80.0 | 480 | 0.1836 |
0.253 | 81.0 | 486 | 0.1861 |
0.2417 | 82.0 | 492 | 0.1650 |
0.2279 | 83.0 | 498 | 0.1706 |
0.2323 | 84.0 | 504 | 0.1785 |
0.225 | 85.0 | 510 | 0.1694 |
0.2194 | 86.0 | 516 | 0.1586 |
0.2217 | 87.0 | 522 | 0.1575 |
0.2093 | 88.0 | 528 | 0.1497 |
0.2109 | 89.0 | 534 | 0.1562 |
0.2081 | 90.0 | 540 | 0.1549 |
0.2027 | 91.0 | 546 | 0.1419 |
0.1982 | 92.0 | 552 | 0.1347 |
0.1951 | 93.0 | 558 | 0.1355 |
0.1893 | 94.0 | 564 | 0.1338 |
0.1881 | 95.0 | 570 | 0.1336 |
0.1911 | 96.0 | 576 | 0.1303 |
0.1862 | 97.0 | 582 | 0.1289 |
0.1882 | 98.0 | 588 | 0.1301 |
0.1792 | 99.0 | 594 | 0.1250 |
0.176 | 100.0 | 600 | 0.1239 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.